A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel automated Parkinson's disease identification approach using deep learning and EEG. | LitMetric

AI Article Synopsis

  • Parkinson's disease (PD) mainly affects older people and causes symptoms like shaking, stiff muscles, and slow movement.
  • Scientists don’t know exactly what causes PD, but both genes and the environment play a role; early detection is important for slowing its progression.
  • A new deep learning model called DLBLSTM can help identify PD more accurately using EEG data, achieving a super high accuracy rate of 99.6%.

Article Abstract

The neurological ailment known as Parkinson's disease (PD) affects people throughout the globe. The neurodegenerative PD-related disorder primarily affects people in middle to late life. Motor symptoms such as tremors, muscle rigidity, and sluggish, clumsy movement are common in patients with this disorder. Genetic and environmental variables play significant roles in the development of PD. Despite much investigation, the root cause of this neurodegenerative disease is still unidentified. Clinical diagnostics rely heavily on promptly detecting such irregularities to slow or stop the progression of illnesses successfully. Because of its direct correlation with brain activity, electroencephalography (EEG) is an essential PD diagnostic technique. Electroencephalography, or EEG, data are biomarkers of brain activity changes. However, these signals are non-linear, non-stationary, and complicated, making analysis difficult. One must often resort to a lengthy human labor process to accomplish results using traditional machine-learning approaches. The breakdown, feature extraction, and classification processes are typical examples of these stages. To overcome these obstacles, we present a novel deep-learning model for the automated identification of Parkinson's disease (PD). The Gabor transform, a standard method in EEG signal processing, was used to turn the raw data from the EEG recordings into spectrograms. In this research, we propose densely linked bidirectional long short-term memory (DLBLSTM), which first represents each layer as the sum of its hidden state plus the hidden states of all layers above it, then recursively transmits that representation to all layers below it. This study's suggested deep learning model was trained using these spectrograms as input data. Using a robust sixfold cross-validation method, the proposed model showed excellent accuracy with a classification accuracy of 99.6%. The results indicate that the suggested algorithm can automatically identify PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703017PMC
http://dx.doi.org/10.7717/peerj-cs.1663DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
deep learning
8
brain activity
8
electroencephalography eeg
8
eeg
5
novel automated
4
automated parkinson's
4
disease
4
disease identification
4
identification approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!