Color polymorphism is a classic study system for evolutionary genetics. One of the most color-polymorphic animal taxa is mollusks, but the investigation of the genetic basis of color determination is often hindered by their life history and the limited availability of genetic resources. Here, we report on the discovery of shell color polymorphism in a much-used model species, the great pond snail . While their shell is usually beige, some individuals from a Greek population show a distinct red shell color, which we nicknamed Ginger. Moreover, we found that the inheritance fits simple, single-locus Mendelian inheritance with dominance of the Ginger allele. We also compared crucial life-history traits between Ginger and wild-type individuals, and found no differences between morphs. We conclude that the relative simplicity of this polymorphism will provide new opportunities for a deeper understanding of the genetic basis of shell color polymorphism and its evolutionary origin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701294PMC
http://dx.doi.org/10.1002/ece3.10678DOI Listing

Publication Analysis

Top Keywords

color polymorphism
12
shell color
12
great pond
8
pond snail
8
genetic basis
8
shell
5
polymorphism
5
color
5
dominant gingers
4
gingers discovery
4

Similar Publications

Climate change is becoming a global challenge, threating agriculture's capacity to meet the food and nutritional requirements of the growing population. Underutilized crops present an opportunity to address climate change and nutritional deficiencies. Tef is a stress-resilient cereal crop, producing gluten-free grain of high nutritional quality.

View Article and Find Full Text PDF

Identification and characterization of ClAPRR2, a key candidate gene controlling watermelon stripe color.

Plant Sci

January 2025

Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China. Electronic address:

The stripe color of watermelon is a vital commercial trait and is the focus of attention of consumers and researchers. However, the genetic determinants of watermelon stripe color are incompletely understood. Based on the results of preliminary localization studies, we constructed a large-capacity F generation population (710 plants) using light-green striped ZXG1555 and green-striped Cream of Saskatchewan (COS) watermelon strains as parental lines for fine mapping.

View Article and Find Full Text PDF
Article Synopsis
  • Sweetpotato, a major crop in sub-Saharan Africa, has diverse accessions in Niger, Nigeria, and Benin that have yet to be fully studied for their genetic potential.
  • The study utilized Diversity Arrays Technology (DArTseq) to genotype 271 sweetpotato accessions, revealing high genetic diversity with varying degrees across different chromosomes.
  • Results indicated four distinct populations based on genetic structure, showcasing a mix of accessions from various countries and highlighting unique traits within Nigerian and Beninese landraces.
View Article and Find Full Text PDF

As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy.

View Article and Find Full Text PDF

Maintenance of flower color dimorphism in (Rubiaceae): responses to fluctuating temperatures in a dolomite Karst region.

Front Plant Sci

December 2024

Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, China.

Introduction: Flower color polymorphism is often attributed to selection pressures from Q9 pollinators or other non-pollinator stress factors. Generally, flower color polymorphism demonstrates effective acclimatization linked to either pollinator-mediated selection or pleiotropic effects.

Methods: To test these hypotheses in Ophiorrhiza japonica, we compared pollinator visitation frequencies and plant traits between pink and white morphs in Shibing, a dolomite Karst region recognized as a World Natural Heritage Site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!