Central metabolism produces carbohydrates and amino acids that are tightly correlated to plant growth and thereby crop productivity. Malate is reported to link mitochondrial respiratory metabolism with cytosolic biosynthetic pathways. Although the function of malate metabolism-related enzymes in providing carbon has been characterized in some plants, evidence for this role in the fleshy fruit of cucumber is lacking. Here, radiolabeled bicarbonate fed into the xylem stream from the cucumber roots was incorporated into amino acids, soluble sugars, and organic acids in the exocarp and vasculature of fruits. The activities of decarboxylases, especially decarboxylation from NADP-dependent malic enzyme (NADP-ME), were higher in cucumber fruit than in the leaf lamina. Histochemical localization revealed that CsNADP-ME2 was mainly located in the exocarp and vascular bundle system of fruit. Radiotracer and gas-exchange analysis indicated that overexpression of could promote carbon flux into soluble sugars and starch in fruits. Further studies combined with metabolic profiling revealed that the downregulation of in RNA interference (RNAi) lines caused the accumulation of its substrate, malate, in the exocarp. In addition to inhibition of glycolysis-related gene expression and reduction of the activities of the corresponding enzymes, increased amino acid synthesis and decreased sugar abundance were also observed in these lines. The opposite effect was found in -overexpressing lines, suggesting that there may be a continuous bottom-up feedback regulation of glycolysis in cucumber fruits. Overall, our studies indicate that may play potential roles in both central carbon reactions and amino acid metabolism in cucumber fruits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10699846 | PMC |
http://dx.doi.org/10.1093/hr/uhad216 | DOI Listing |
EBioMedicine
January 2025
Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital; Columbus, OH, 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University; Columbus, OH 43210, USA. Electronic address:
BMC Plant Biol
January 2025
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFPituitary
January 2025
Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.
View Article and Find Full Text PDFMetabolomics
January 2025
Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!