Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries, playing a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular diseases and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating differentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on the zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that the arterial expression of CoW endothelial cells (ECs) occurs after their migration from the cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors upon recruitment to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity wall shear stress. Furthermore, pulsatile blood flow is required for differentiation of human brain pdgfrb+ mural cells into VSMCs as well as VSMC differentiation on zebrafish CoW arteries. Consistently, the flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight the role of blood flow activation of endothelial klf2a as a mechanism regulating the initial VSMC differentiation on vertebrate brain arteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10705471 | PMC |
http://dx.doi.org/10.1101/2023.12.01.569622 | DOI Listing |
Arterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
Eur J Cell Biol
December 2024
Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA. Electronic address:
Vascular stabilization is a mechanosensitive process, in part driven by blood flow. Here, we demonstrate the involvement of the mechanosensitive ion channel, Piezo1, in promoting arterial accumulation of vascular smooth muscle cells (vSMCs) during zebrafish development. Using a series of small molecule antagonists or agonists to temporally regulate Piezo1 activity, we identified a role for the Piezo1 channel in regulating klf2a, a blood flow responsive transcription factor, expression levels and altered targeting of vSMCs between arteries and veins.
View Article and Find Full Text PDFRedox Biol
February 2025
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:
NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA. Electronic address:
Background: Recent smooth muscle cell (SMC)-lineage tracing and single-cell RNA sequencing (scRNA-seq) experiments revealed a significant role of SMC-derived cells in atherosclerosis development. Further, thrombospondin-1 (TSP1), a matricellular protein, and activation of its receptor cluster of differentiation (CD) 47 have been linked with atherosclerosis. However, the role of vascular SMC TSP1-CD47 signaling in regulating VSMC phenotype and atherogenesis remains unknown.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
Atherosclerotic plaque rupture mainly contributes to acute coronary syndrome (ACS). Insufficient repair of these plaques leads to thrombosis and subsequent ACS. Central to this process is the modulation of vascular smooth muscle cells (VSMCs) phenotypes, emphasizing their pivotal role in atherosclerotic plaque stability and healing post-disruption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!