Kainate receptors (KARs) belong to the family of ionotropic glutamate receptors (iGluRs) and are tetrameric ligand-gated ion channels that regulate neurotransmitter release and excitatory synaptic transmission in the central nervous system. While KARs share overall architectures with other iGluR subfamilies, their dynamics are significantly different from those of other iGluRs. KARs are activated by both full and partial agonists. While there is less efficacy with partial agonists than with full agonists, the detailed mechanism has remained elusive. Here, we used cryo-electron microscopy to determine the structures of homomeric rat GluK2 KARs in the absence of ligands (apo) and in complex with a partial agonist. Intriguingly, the apo state KARs were captured in desensitized conformation. This structure confirms the KAR desensitization prior to activation. Structures of KARs complexed to the partial agonist domoate populate in domoate bound desensitized and non-active/non-desensitized states. These previously unseen intermediate structures highlight the molecular mechanism of partial agonism in KARs. Additionally, we show how -glycans stabilized the ligand-binding domain dimer via cation/anion binding and modulated receptor gating properties using electrophysiology. Our findings provide vital structural and functional insights into the unique KAR gating mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10705692PMC
http://dx.doi.org/10.21203/rs.3.rs-3592604/v1DOI Listing

Publication Analysis

Top Keywords

partial agonist
12
kainate receptors
8
partial agonists
8
kars
7
partial
6
structural dynamics
4
dynamics gluk2
4
gluk2 kainate
4
receptors apo
4
apo partial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!