Myeloid cells, including neutrophils, monocytes and macrophages, accumulate quickly after ischemic injury in the heart where they play integral roles in the regulation of inflammation and repair. We previously reported that deletion of β2-adrenergic receptor (β2AR) in all cells of hematopoietic origin resulted in generalized disruption of immune cell responsiveness to injury, but with unknown impact on myeloid cells specifically. To investigate this, we crossed floxed β2AR (F/F) mice with myeloid cell-expressing Cre (LysM-Cre) mice to generate myeloid cell-specific β2AR knockout mice (LB2) and subjected them to myocardial infarction (MI). Via echocardiography and immunohistochemical analyses, LB2 mice displayed better cardiac function and less fibrotic remodeling after MI than the control lines. Despite similar accumulation of myeloid cell subsets in the heart at 1-day post-MI, LB2 mice displayed reduced numbers of Nu by 4 days post-MI, suggesting LB2 hearts have enhanced capacity for Nu efferocytosis. Indeed, bone marrow-derived macrophage (BMDM)-mediated efferocytosis of Nu was enhanced in LB2-versus F/F-derived cells in vitro. Mechanistically, several pro-efferocytosis-related genes were increased in LB2 myeloid cells, with annexin A1 ( ) in particular elevated in several myeloid cell types following MI. Accordingly, shRNA-mediated knockdown of in LB2 bone marrow prior to transplantation into irradiated LB2 mice reduced Mac-induced Nu efferocytosis in vitro and prevented the ameliorative effects of myeloid cell-specific β2AR deletion on cardiac function and fibrosis following MI in vivo. Altogether, our data reveal a previously unrecognized role for β2AR in the regulation of myeloid cell-dependent efferocytosis in the heart following injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10705241 | PMC |
http://dx.doi.org/10.1101/2023.11.27.568873 | DOI Listing |
Br J Pharmacol
January 2025
Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
Background And Purpose: Chronic kidney disease (CKD) is characterised by inflammation, which can lead to tubular atrophy and fibrosis. The molecular mechanisms are not well understood. In this study, we investigated the functional role of the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signalling in renal inflammation and fibrosis.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.
One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:
Background: The liver plays a central role in fat storage, but little is known about physiological fat accumulation during early development. Here we investigated a transient surge in hepatic lipid droplets observed in newborn mice immediately after birth.
Methods: We developed a novel model to quantify liver fat content without tissue processing.
Cell Metab
January 2025
Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China; Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China. Electronic address:
Bacterial infection reprograms cellular metabolism and epigenetic status, but how the metabolic-epigenetic crosstalk empowers host antibacterial defense remains unclear. Here, we report that heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is a sensor for metabolite adenine to launch an antimicrobial innate response through increasing Il1b transcription. Myeloid cell-specific Hnrnpa2b1-cKO mice are more susceptible to bacterial infection, while interleukin 1 beta (IL-1β) supplementation rescues the phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!