Neurodegenerative diseases such as Alzheimer's disease (AD) exhibit pathological changes in the brain that proceed in a stereotyped and regionally specific fashion, but the cellular and molecular underpinnings of regional vulnerability are currently poorly understood. Recent work has identified certain subpopulations of neurons in a few focal regions of interest, such as the entorhinal cortex, that are selectively vulnerable to tau pathology in AD. However, the cellular underpinnings of regional susceptibility to tau pathology are currently unknown, primarily because whole-brain maps of a comprehensive collection of cell types have been inaccessible. Here, we deployed a recent cell-type mapping pipeline, Matrix Inversion and Subset Selection (MISS), to determine the brain-wide distributions of pan-hippocampal and neocortical neuronal and non-neuronal cells in the mouse using recently available single-cell RNA sequencing (scRNAseq) data. We then performed a robust set of analyses to identify general principles of cell-type-based selective vulnerability using these cell-type distributions, utilizing 5 transgenic mouse studies that quantified regional tau in 12 distinct PS19 mouse models. Using our approach, which constitutes the broadest exploration of whole-brain selective vulnerability to date, we were able to discover cell types and cell-type classes that conferred vulnerability and resilience to tau pathology. Hippocampal glutamatergic neurons as a whole were strongly positively associated with regional tau deposition, suggesting vulnerability, while cortical glutamatergic and GABAergic neurons were negatively associated. Among glia, we identified oligodendrocytes as the single-most strongly negatively associated cell type, whereas microglia were consistently positively correlated. Strikingly, we found that there was no association between the gene expression relationships between cell types and their vulnerability or resilience to tau pathology. When we looked at the explanatory power of cell types versus GWAS-identified AD risk genes, cell type distributions were consistently more predictive of end-timepoint tau pathology than regional gene expression. To understand the functional enrichment patterns of the genes that were markers of the identified vulnerable or resilient cell types, we performed gene ontology analysis. We found that the genes that are directly correlated to tau pathology are functionally distinct from those that constitutively embody the vulnerable cells. In short, we have demonstrated that regional cell-type composition is a compelling explanation for the selective vulnerability observed in tauopathic diseases at a whole-brain level and is distinct from that conferred by risk genes. These findings may have implications in identifying cell-type-based therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10705232 | PMC |
http://dx.doi.org/10.1101/2023.07.06.548027 | DOI Listing |
Acta Neuropathol Commun
January 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
Lewy bodies and neurofibrillary tangles, composed of α-synuclein (α-syn) and tau, respectively, often are found together in the same brain and correlate with worsening cognition. Human postmortem studies show colocalization of α-syn and tau occurs in Lewy bodies, but with limited effort to quantify colocalization. In this study, postmortem middle temporal gyrus tissue from decedents (n = 9) without temporal lobe disease (control) or with Lewy body disease (LBD) was immunofluorescently labeled with antibodies to phosphorylated α-syn (p-α-syn), tau phosphorylated at Ser202/Thr205 (p-tau), or exposure of tau's phosphatase-activating domain (PAD-tau) as a marker of early tau aggregates.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Neurology 5 - Neuropathology Unit, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
Background: The approval of new disease-modifying therapies by the U.S. Food and Drug Administration and the European Medicine Agency makes it necessary to optimize non-invasive and cost-effective tools for the identification of subjects at-risk of developing Alzheimer's Disease (AD).
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by cognitive impairment, for which effective treatments remain lacking. Albumin (ALB) is an essential carrier protein found in various body fluids, playing crucial roles in anti-inflammatory processes, antioxidation, and signal transduction. Recent research indicates that ALB may play a significant role in the development and progression of AD, though its specific function is not yet fully understood.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China.
Purpose: This study evaluated the differences in amyloid-β (Aβ), tau deposition, and longitudinal tau deposition between subjective cognitive decline (SCD) and objective subtle cognitive difficulties (Obj-SCD).
Methods: Participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (n = 234) and the Huashan cohort (n = 267) included individuals with Obj-SCD, SCD, subjective memory concern (SMC), and healthy controls (HC). General linear models (GLM) were used to compare baseline and longitudinal differences in Aβ and tau among the groups, and to examine the associations between these biomarkers.
J Appl Lab Med
January 2025
Eli Lilly and Company, Indianapolis, IN, United States.
Background: Blood-based biomarkers, especially P-tau217, have been gaining interest as diagnostic tools to measure Alzheimer disease (AD) pathology.
Methods: We developed a plasma P-tau217 chemiluminescent immunoassay using 4G10E2 and IBA493 as antibodies, a synthetic tau peptide as calibrator, and the Quanterix SP-X imager. Analytical validation performed in a College of American Pathologists-accredited CLIA laboratory involved multiple kit lots, operators, timepoints, and imagers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!