The precise mechanisms governing sequence-dependent positioning of nucleosomes on DNA remain unknown in detail. Existing algorithms, taking into account the sequence-dependent deformability of DNA and its interactions with the histone globular domains, predict rotational setting of only 65% of human nucleosomes mapped . To uncover novel factors responsible for the nucleosome positioning, we analyzed potential involvement of the histone N-tails in this process. To this aim, we reconstituted the H2A/H4 N-tailless nucleosomes on human BRCA1 DNA (~100 kb) and compared their positions and sequences with those of the wild-type nucleosomes. In the case of H2A tailless nucleosomes, the AT content of DNA sequences is changed locally at superhelical location (SHL) ±4, while maintaining the same rotational setting as their wild-type counterparts. Conversely, the H4 tailless nucleosomes display widespread changes of the AT content near SHL ±1 and SHL ±2, where the H4 N-tails interact with DNA. Furthermore, a substantial number of H4 tailless nucleosomes exhibit rotational setting opposite to that of the wild-type nucleosomes. Thus, our findings strongly suggest that the histone N-tails are operative in selection of nucleosome positions, which may have wide-ranging implications for epigenetic modulation of chromatin states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10705531PMC
http://dx.doi.org/10.1101/2023.11.30.569460DOI Listing

Publication Analysis

Top Keywords

histone n-tails
12
rotational setting
12
tailless nucleosomes
12
nucleosomes
9
positioning nucleosomes
8
wild-type nucleosomes
8
dna
5
histone
4
n-tails modulate
4
modulate sequence-specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!