Canonical heterotrimeric G-proteins (G-proteins) are comprised of Gα, Gβ, and Gγ subunits. G-proteins regulate multiple crucial plant growth and development processes, incorporating environmental responses. Besides Gα, Gβ and Gγ, the discovery of atypical Gα subunits termed as extra-large G-proteins or extra-large GTP-binding proteins (XLGs) makes G-protein signaling unique in plants. The C-terminus of XLG shares similarities with the canonical Gα subunits; the N-terminus harbors a nuclear localization signal (NLS) and is rich in cysteine. The earlier explorations suggest XLG's role in flowering, the development of embryos and seedlings, root morphogenesis, stamen development, cytokinin-induced development, stomatal opening and regulation of rice grain filling. The XLGs are also known to initiate signaling cascades that prime plants against a variety of abiotic and biotic stresses. They are also engaged in controlling several agronomic parameters such as rice panicle length, grain filling, grain size, and biomass, highlighting their potential contribution to crop improvement. The present review explores the remarkable properties of non-canonical Gα subunits (XLGs) and reflects on the various developmental, abiotic and biotic stress signaling pathways controlled by them. Moreover, the bottleneck dilemma of how a tiny handful of XLGs control a multiplicity of stress-responsive activities is partially resolved in this review by addressing the interaction of XLGs with different interacting proteins. XLG proteins presented in this review can be exploited to gain access to highly productive and stress-tolerant plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709287PMC
http://dx.doi.org/10.1007/s12298-023-01378-6DOI Listing

Publication Analysis

Top Keywords

abiotic biotic
12
gα subunits
12
biotic stress
8
gα gβ
8
gβ gγ
8
grain filling
8
6
xlgs
5
atypical heterotrimeric
4
heterotrimeric gα
4

Similar Publications

Transcriptional engineering for value enhancement of oilseed crops: a forward perspective.

Front Genome Ed

January 2025

Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.

Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates.

View Article and Find Full Text PDF

Invariant Spatial Pattern Across Mediterranean Scrublands in the Iberian Pear ().

Ecol Evol

January 2025

Centro de Investigaciones sobre Desertificación CIDE CSIC-UVEG-GV Valencia Spain.

The spatial distribution pattern of plant species is frequently driven by a combination of biotic and abiotic factors that jointly influence the arrival, establishment, and reproduction of plants. Comparing the spatial distribution of a target plant species in different populations represents a robust approach to identify the underlying mechanisms. We mapped all reproductive individuals of the Iberian pear () in five plots (1.

View Article and Find Full Text PDF

Background: WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation.

View Article and Find Full Text PDF

Abiotic and Biotic Dissipation in Natural Attenuation of Phenanthrene and Benzo[a]pyrene: A Systematic Quantification Study in Contrasting Soils.

Environ Pollut

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.

Natural attenuation represents a significant ecosystem function for mitigating the quantity and toxicity of polycyclic aromatic hydrocarbons (PAHs) through both abiotic and biotic dissipation processes. This study systematically investigated abiotic and biotic dissipation of phenanthrene (Phe) and benzo[a]pyrene (BaP) in four soils over 360 days, using CSIA to quantitatively analyze δ³C changes and demonstrate biodegradation. The results indicated that extractable Phe was primarily attenuated via biodegradation (65% - 81%), as revealed by CSIA, with the δ³C changes ranging from 2.

View Article and Find Full Text PDF

This review serves as a critical framework for guiding future research into the causes of russeting and the development of effective control strategies to enhance fruit quality. Russeting is a condition characterized by the formation of brown, corky patches on fruit skin which significantly impairs both the quality and market value of apples. This phenomenon arises from a complex interplay of various biotic and abiotic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!