Background: Dengue is a major arthropod-borne viral disease spreading rapidly across the globe. The absence of vaccines and inadequate vector control measures leads to further expansion of dengue in many regions globally. Hence, the identification of genes involved in the pathogenesis of dengue will help to understand the molecular basis of the disease and the genes responsible for the disease progression.
Methods: In the present study, a meta-analysis was carried out using dengue gene expression data obtained from Gene Expression Omnibus repository. The differentially expressed genes such as CCNB1 and CCNB2 (G2/mitotic-specific cyclin-B2 and B1) were upregulated in dengue fever to control (DF-CO) and severe dengue (dengue hemorrhagic fever [DHF]) to control (DHF-CO) were identified as key genes for controlling the major pathways (cell cycle, oocyte meiosis, p53 signaling pathway, cellular senescence and progesterone-mediated oocyte maturation). Similarly, interferon alpha-inducible (IFI27) genes, type-I and type-III interferon (IFN) signaling genes (STAT1 and STAT2), B cell activation and survival genes (TNFSF13B, TNFRSF17) and toll like receptor (TLR7) genes were differentially up activated during DF-CO and DHF-CO. Followed by, Cytoscape was used to identify the immune system process and topological analysis.
Results: The results showed that the top differentially expressed genes under the statistical significance <0.001, which is majorly involved in Kyoto Encyclopedia of Genes and Genomes orthology K05868 and K21770 with gene names CCNB1 and CCNB2. In addition to this, the immune system profile showed up-regulation of IL12A, CXCR3, TNFSF13B, IFI27, TNFRSF17, STAT, STAT2, and TLR7 genes in DF-CO and DHF-CO act as immunological signatures for inducing the immune response towards dengue infection.
Conclusions: The current study could aid in understanding of molecular pathogenesis, genes and corresponding pathway upon dengue infection, and could facilitate for identification of novel drug targets and prognostic markers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10699721 | PMC |
http://dx.doi.org/10.1016/j.imj.2023.02.002 | DOI Listing |
Elife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkiye.
Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
Chem Biodivers
January 2025
Yatsen Global Innovation R&D Center, Yatsen Global Innovation R&D Center, No. 11 Building, No. 210, Wenshui Road, Jingan District, Shanghai, CHINA.
A new depside glucoside rosarugoside E (1), together with four known compounds punicalagin (2), corilagin (3), granatin B (4) and ellagic acid (5) were isolated from the ethanol extract of pomegranate (Punica granatum L.) flower. Their structures were identified based on careful analysis of various spectral data including UV, IR, HR-ESI-MS, 1D and 2D NMR.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
Background: Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology.
Methods: Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!