Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sarcasm detection research in Bengali is still limited due to a lack of relevant resources. In this context, getting high-quality annotated data is costly and time-consuming. Therefore, in this paper, we present a transformer-based generative adversarial learning for sarcasm detection from Bengali text based on available limited labeled data. Here, we use the Bengali sarcasm dataset 'Ben-Sarc'. Besides, we construct another dataset containing Bengali sarcastic and non-sarcastic comments from YouTube and newspapers to observe the model's performance on the new dataset. On top of that, we utilize another Bengali sarcasm dataset 'BanglaSarc' to further prove our models' robustness. Among all models, the Bangla BERT-based Generative Adversarial Model has achieved the highest accuracy with 77.1% for the 'Ben-Sarc' dataset. Besides, this model has achieved the highest accuracy of 68.2% for the dataset constructed from YouTube and newspaper, and 97.2% for the 'BanglaSarc' dataset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709363 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e22531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!