AI Article Synopsis

Article Abstract

The present work investigates a sustainable approach to synthesize magnesium oxide nanoparticles (MgO NPs) using an aqueous pulp extract derived from . The effective synthesis of MgO NPs was verified by characterizing methods such as UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). These nanoparticles possess small crystallite sizes, distinctive surface shapes, specific elemental compositions, and stabilizing and encapsulating constituents. Furthermore, total phenolic content (TPC) and total flavonoid content (TFC) tests revealed the existence of phytochemical components in MgO NPs. Significantly, these MgO NPs demonstrated exceptional antioxidant capabilities, as evidenced by their strong performance in antioxidant assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), nitric oxide (NO) scavenging, and iron chelation tests. They also exhibited a notable ability to inhibit red blood cell (RBC) hemolysis and lipid peroxidation. In toxicity assessments using Baby Hamster Kidney fibroblasts (BHK-21) and Vero cell lines, the MgO NPs displayed a safe profile. Additionally, studies on Doxorubicin (DOX)-induced cardiotoxicity revealed the cardioprotective properties of these NPs, accompanied by a detailed understanding of the underlying mechanisms. Pretreatment with MgO NPs effectively countered DOX-induced alterations in cardiac biomarkers, lipid profiles, cardiac enzymes, and lipid peroxidation. Furthermore, they modulated apoptosis-related markers (caspase-3 and p53), upregulated antiapoptotic (Bcl-2), and antioxidant (SOD) markers, suggesting their potential therapeutic value in addressing DOX-induced cardiomyopathy. In conclusion, this study underscores the promising cardioprotective, hypolipidemic, antioxidant, and antiapoptotic qualities of MgO NPs derived from tamarind pulp, offering valuable insights into their therapeutic applications and underlying biological mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701879PMC
http://dx.doi.org/10.1021/acsomega.3c05851DOI Listing

Publication Analysis

Top Keywords

mgo nps
28
magnesium oxide
8
oxide nanoparticles
8
nps
8
lipid peroxidation
8
mgo
7
unraveling pulp-derived
4
pulp-derived green
4
green magnesium
4
nanoparticles cardioprotective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!