In this study, a PANI/NiO/Graphene (PNG) nanocomposite was synthesized using a cost-effective wet chemical polymerization method. This nanocomposite was used to fabricate supercapacitor electrodes in a nontoxic, noncorrosive, and neutral hybrid gel polymer (PVA/NaSO) electrolyte. The electrodes made from the PNG material underwent analysis using electrochemical techniques, including cyclic voltammetry (CV) and electrochemical impedance spectroscopy in a three-electrode system. For a deeper exploration of the supercapacitive properties of the PNG material, galvanostatic charge-discharge was employed. A practical two-electrode symmetric device powered by the hybrid PVA/NaSO electrolyte was fabricated to calculate specific capacitance, energy density, and power density. The designed PNG material demonstrates excellent electrochemical behavior, exhibiting an improved energy density of 59.41 W h/kg at 850 W/kg. Furthermore, the PNG electrode shows excellent reversibility along with enhanced energy density and retains 89% of its capacitance after 2000 cycles. These outstanding properties of the PNG material can be attributed to the synergistic effect of PANI nanofibrous, NiO, and graphene two-dimensional structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702301 | PMC |
http://dx.doi.org/10.1021/acsomega.3c06900 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!