AI Article Synopsis

  • Sequencing whole plant genomes is crucial for both applied and fundamental research, particularly in agriculture, as it helps understand beneficial traits of plants.
  • Flax is an important crop valued for its oil and fiber, and its genome sequence can provide valuable genetic information for improving cultivated varieties.
  • The authors successfully sequenced the first genome of a specific flax variety using Oxford Nanopore and Illumina technologies, achieving a high-quality assembly that enables future studies on plant evolution, domestication, and genome regulation.

Article Abstract

Sequencing whole plant genomes provides a solid foundation for applied and basic studies. Genome sequences of agricultural plants attract special attention, as they reveal information on the regulation of beneficial plant traits. Flax is a valuable crop cultivated for oil and fiber. Genome sequences of its representatives are rich sources of genetic information for the improvement of cultivated forms of the plant. In our work, we sequenced the first genome of flax with the dehiscence of capsules- convar. (Boenn.) Dumort-on the Oxford Nanopore Technologies (ONT) and Illumina platforms. We obtained 23 Gb of raw ONT data and 89 M of 150 + 150 paired-end Illumina reads and tested different tools for genome assembly and polishing. The genome assembly produced according to the Canu-Racon ×2-medaka-POLCA scheme had optimal contiguity and completeness: assembly length-412.6 Mb, N50-5.2 Mb, L50-28, and complete BUSCO-94.6% (64.0% duplicated, eudicots_odb10). The obtained high-quality genome assembly of convar. provides opportunities for further studies of evolution, domestication, and genome regulation in the section .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702972PMC
http://dx.doi.org/10.3389/fgene.2023.1269837DOI Listing

Publication Analysis

Top Keywords

genome assembly
12
genome
8
genome sequences
8
genome convar
4
convar expands
4
expands view
4
view sequencing
4
sequencing plant
4
plant genomes
4
genomes solid
4

Similar Publications

Some unique asexual species persist over time and contradict the consensus that sex is a prerequisite for long-term evolutionary survival. How they escape the dead-end fate remains enigmatic. Here, we generated a haplotype-resolved genome assembly on the basis of a single individual and collected genomic data from worldwide populations of the parthenogenetic diploid oribatid mite to identify signatures of persistence without sex.

View Article and Find Full Text PDF

Haplotyped-resolved phased assemblies aim to capture the full allelic diversity in heterozygous and polyploid species to enable accurate genetic analyses. However, building non-collapsed references still presents a challenge. Here, we used long-range interaction Hi-C reads (high-throughput chromatin conformation capture) and HiFi PacBio reads to assemble the genome of the apomictic cultivar Basilisks from Urochloa decumbens (2n = 4x = 36), an outcrossed tetraploid Paniceae grass widely cropped to feed livestock in the tropics.

View Article and Find Full Text PDF

mettannotator: a comprehensive and scalable Nextflow annotation pipeline for prokaryotic assemblies.

Bioinformatics

January 2025

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.

Summary: In recent years there has been a surge in prokaryotic genome assemblies, coming from both isolated organisms and environmental samples. These assemblies often include novel species that are poorly represented in reference databases creating a need for a tool that can annotate both well-described and novel taxa, and can run at scale. Here, we present mettannotator-a comprehensive, scalable Nextflow pipeline for prokaryotic genome annotation that identifies coding and non-coding regions, predicts protein functions, including antimicrobial resistance, and delineates gene clusters.

View Article and Find Full Text PDF

Some marine and extremophilic microorganisms are capable of synthesizing sulfated polysaccharides with a unique structure. A number of studies indicate significant biological properties of individual sulfated polysaccharides, such as antiproliferative activity, which makes them a promising area for further research. In this study, the capsular polysaccharide (CPS) was obtained from the bacterium KMM 1449, isolated from a marine sediment sample collected along the shore of the Sea of Japan.

View Article and Find Full Text PDF

is a well-known edible and medicinal fungus with significant economic value. However, the available whole-genome information is lacking for this species. The chromosome-scale reference genome (Monop) and two haploid genomes (Hap1 and Hap2) of , each assembled into 11 pseudochromosomes, were constructed using Illumina, PacBio-HiFi long-read sequencing, and Hi-C technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!