Plasmonic molecular junctions can harvest visible light and effectively catalyze chemical reactions. The strong light field concentrated in the plasmonic junction also enables the application of surface enhanced Raman spectroscopy (SERS) to probe the catalyzed chemical reactions and in real time down to single-molecule resolution. The benzyl radical produced from the aromatic methyl group through the dehydrogenation reaction is an important precursor for a large variety of reactions. Here, we used time-resolved SERS to conduct a mechanistic study of the plasmon-driven dehydrogenation reaction of the aromatic methyl group under ambient conditions under the illumination of red light on the apex of a gold nanoelectrode. Transient spectral changes with intensity bursts are frequently observed. Based on density functional theory and picocavity based local electric field enhancement calculations, they result from the plasmon mediated dehydrogenation reaction of aromatic methyl groups. The dehydrogenation reaction produces a benzyl radical, which is consequently converted to a benzyl anion. The benzyl anion is stabilized through strong interactions with gold, leading to the formation of dynamic gold adatoms and picocavities. In addition to the benzyl anion, we found spectral evidence that the benzyl radical generates dimers through a self-reaction. Furthermore, we demonstrated that the dehydrogenation reaction could be facially modulated by changing the electrode potential, which is attributed to the modulated inductive effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10699572 | PMC |
http://dx.doi.org/10.1039/d3sc05847f | DOI Listing |
Sci Bull (Beijing)
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institut de Química Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
The environmental persistence of organophosphate flame retardants (OPFRs) in water is becoming and environmental concern. White Rot Fungi (WRF) have proven its capability to degrade certain OPFRs such as tributyl phosphate (TBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP). Despite this capability, there is limited knowledge about the specific pathways involved in the degradation.
View Article and Find Full Text PDFNat Commun
January 2025
Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
Liquid organic hydrogen carriers (LOHCs) are considered promising carriers for large-scale H storage and transportation, among which the toluene-methylcyclohexane cycle has attracted great attention from industry and academia because of the low cost and its compatibility with the current infrastructure facility for the transportation of chemicals. The large-scale deployment of the H storage/transportation plants based on the toluene-methylcyclohexane cycle relies on the use of high-performance catalysts, especially for the H release process through the dehydrogenation of methylcyclohexane. In this work, we have developed a highly efficient catalyst for MCH dehydrogenation reaction by incorporating subnanometer PtFe clusters with precisely controlled composition and location within a rigid zeolite matrix.
View Article and Find Full Text PDFJ Org Chem
January 2025
Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany.
In contrast to what one can be led to believe upon inspecting some of the recent literature, the dehydrogenative phenothiazination reaction does not require onerous technologies, complicated setups, or advanced catalysts in order to be mild and sustainable. We demonstrate this herein with a most facile, cost-effective, and sustainable Cu(II) catalyzed method, under 1 atm of O at room temperature in methanol, providing broad scope and high yields. These new results further set the dehydrogenative phenothiazination reaction among the green and practical coupling concepts of chemistry.
View Article and Find Full Text PDFOrg Lett
January 2025
Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.
Domino cascade reactions, which can construct multiple bonds in one pot, are efficient methods to synthesize N-heterocycles and other useful skeletons. Herein, we report an expedient synthesis of polysubstituted benzo[][1,5]naphthyridine via Mn(III)-mediated C-C bond cleavage of cyclopropanols. These reactions were initiated by addition of β-carbonyl radicals, generated from cyclopropyl alcohols in the presence of Mn(III), to 2-(2-isocyanophenyl)acetonitriles to give quinolin-3-amines, which went through intramolecular cyclizations and dehydrogenation to give the final products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!