A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Near-infrared spectra dataset of milk composition in transmittance mode. | LitMetric

Near-infrared spectra dataset of milk composition in transmittance mode.

Data Brief

Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium.

Published: December 2023

Monitoring of milk composition can support several dimensions of dairy management such as identification of the health status of individual dairy cows and the safeguarding of dairy quality. The quantification of milk composition has been traditionally executed employing destructive chemical or laboratory Fourier-transform infrared (FTIR) spectroscopy analyses which can incur high costs and prolonged waiting times for continuous monitoring. Therefore, modern technology for milk composition quantification relies on non-destructive near-infrared (NIR) spectroscopy which is not invasive and can be performed on-farm, in real-time. The current dataset contains NIR spectral measurements in transmittance mode in the wavelength range from 960 nm to 1690 nm of 1224 individual raw milk samples, collected on-farm over an eight-week span in 2017, at the experimental dairy farm of the province of Antwerp, 'Hooibeekhoeve' (Geel, Belgium). For these spectral measurements, laboratory reference values corresponding to the three main components of raw milk (fat, protein and lactose), urea and somatic cell count (SCC) are included. This data has been used to build multivariate calibration models to predict the three milk compounds, as well as develop strategies to monitor the prediction performance of the calibration models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700509PMC
http://dx.doi.org/10.1016/j.dib.2023.109767DOI Listing

Publication Analysis

Top Keywords

milk composition
16
transmittance mode
8
spectral measurements
8
raw milk
8
calibration models
8
milk
7
near-infrared spectra
4
spectra dataset
4
dataset milk
4
composition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!