Breast cancer is considered the most prevalent malignancy due to its high incidence rate, recurrence, and metastasis in women that makes it one of the deadliest cancers. The current study aimed to predict the genes associated with the recurrence and metastasis of breast cancer and to validate their effect on MDA-MB-231 cells. Through the bioinformatics analysis, the transcription factor 7 cofactor (MLLT11) as the target gene was obtained. MLLT11-specific siRNA was synthesized and transfected into MDA-MB-231 cells. The results demonstrated that the siRNA significantly reduced the MLLT11 mRNA levels. Moreover, cell migration and invasion, as well as the protein levels of phosphatidylinositol 3-kinase (PI3K), AKT, matrix metalloproteinase (MMP) 2, and MMP9, were significantly lower in the groups treated with siRNA while the apoptosis was augmented. Collectively, MLLT11 siRNA elicited ameliorative properties on breast cancer cells, possibly via the inhibition of the PI3K/AKT signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10708952PMC
http://dx.doi.org/10.1155/2023/6282654DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
mllt11 sirna
8
cancer cells
8
recurrence metastasis
8
mllt11
4
sirna inhibits
4
inhibits migration
4
migration promotes
4
promotes apoptosis
4
apoptosis mda-mb-231
4

Similar Publications

Background: Screening of asymptomatic stage IV breast cancer with brain MRIs is currently not recommended by National Comprehensive Cancer Network (NCCN) Guidelines. The incidence of asymptomatic brain metastasis is not well documented.

Methods: The study is designed as a single arm, phase II trial, with the goal of investigating surveillance brain MRIs in neurologically asymptomatic patients with metastatic breast cancer.

View Article and Find Full Text PDF

Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.

View Article and Find Full Text PDF

Background: Colon adenocarcinoma (COAD) is a malignancy with a high mortality rate and complex biological characteristics and heterogeneity, which poses challenges for clinical treatment. Anoikis is a type of programmed cell death that occurs when cells lose their attachment to the extracellular matrix (ECM), and it plays a crucial role in tumor metastasis. However, the specific biological link between anoikis and COAD, as well as its mechanisms in tumor progression, remains unclear, making it a potential new direction for therapeutic strategy research.

View Article and Find Full Text PDF

Introduction: Oncolytic herpes simplex viruses (oHSVs) are a type of biotherapeutic utilized in cancer therapy due to their ability to selectively infect and destroy tumor cells without harming healthy cells. We sought to investigate the functional genomic response and altered metabolic pathways of human cancer cells to oHSV-1 infection and to elucidate the influence of these responses on the relationship between the virus and the cancer cells.

Methods: Two datasets containing gene expression profiles of tumor cells infected with oHSV-1 (G207) and non-infected cells from the Gene Expression Omnibus (GEO) database were processed and normalized using the R software.

View Article and Find Full Text PDF

Background: Breast cancer remains a leading cause of mortality among women, driven by the molecular complexity of its various subtypes. This study aimed to investigate the differential expression of genes and miRNAs involved in the PI3K/AKT/mTOR signaling pathway, a critical regulator of cancer progression.

Methods: We analyzed tumor tissues from five breast cancer subtypes-luminal A, luminal B HER2-negative, luminal B HER2-positive, HER2-positive, and triple-negative breast cancer (TNBC)-and compared them with non-cancerous tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!