Heterotrimetallic complexes with (NS)M metallodithiolates, M = Ni, [Fe(NO)], and [Co(NO)], as bidentate chelating ligands to a central trans-Cr(NO)(MeCN) unit were characterized as the first members of a new class, , , . The complexes exhibit a cisoid structural topology, ascribed to the stereoactivity of the available lone pair(s) on the sulfur donors, resulting in a dispersed, electropositive pocket from the N/N and N/S hydrocarbon linkers wherein the Cr-NO site is housed. Computational studies explored alternative isomers (transoid and inverted cisoid) that suggest a combination of electronic and steric effects govern the geometrical selectivity. Electrostatic potential maps readily display the dominant electronegative potential from the sulfurs which force the NO to the electropositive pocket. The available S lone pairs work in synergy with the π-withdrawing ability of NO to lift Cr out of the S plane toward the NO and stabilize the geometry. The metallodithiolate ligands bound to Cr(NO) thus find structural consistency across the three congeners. Although the dinitrosyl [(bme-dach)Co(NO)-Mo(NO)(MeCN)-(bme-dach)Co(MeCN)][PF] (') analogue displays chemical noninnocence and a partial Mo-Co bond toward (NS)Co'(NCCH) in an "asymmetric butterfly" topology [Guerrero-Almaraz P.Inorg. Chem.2021, 60(21 (21), ), 15975-15979], the stability of the {Cr(NO)} unit prohibits such bond rearrangement. Magnetism and EPR studies illustrate spin coupling across the sulfur thiolate sulfur bridges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10704581PMC
http://dx.doi.org/10.1021/acsorginorgau.3c00025DOI Listing

Publication Analysis

Top Keywords

lone pairs
12
heterotrimetallic complexes
8
electropositive pocket
8
sulfur
4
sulfur lone
4
pairs control
4
control topology
4
topology heterotrimetallic
4
complexes experimental
4
experimental theoretical
4

Similar Publications

Stereoactive Lone-Pair Manipulation for High Thermoelectric Performance of GeSe-Based Compounds.

ACS Appl Mater Interfaces

January 2025

Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.

Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.

View Article and Find Full Text PDF

Insight into the Origin of Second Harmonic Generation and Rational Design in the Metal Halide Borates.

Inorg Chem

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.

Metal halide borates are promising candidates for high-performance nonlinear optical (NLO) applications, yet the origins of their second harmonic generation (SHG) properties remain unclear. Using atom response theory combined with density functional theory calculations, this study investigates why halogen substitution leads to distinctly different SHG responses in halide monoborates (PbBOX) versus halide pentaborates (PbBOX). We find that the SHG origins vary between these two families due to differences in the strength of the Pb-X interactions.

View Article and Find Full Text PDF

Where are the lone pairs? QC and QCT.

Acta Crystallogr C Struct Chem

February 2025

Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico.

The article by Guzmán-Hernández & Jancik [(2024). Acta Cryst. C80, 766-774] is an excellent example of how QC-QCT (quantum crystallography-quantum chemical topology) methodology can extract structural information from a crystal.

View Article and Find Full Text PDF

Two-dimensional (2D) β-TeO has gained attention as a promising material for optoelectronic and power device applications, thanks to its transparency and high hole mobility. However, the mechanisms driving its -type conductivity and dopability remain elusive. In this study, we investigate the intrinsic and extrinsic point defects in monolayer and bilayer β-TeO, the latter of which has been experimentally synthesized, using the Heyd-Scuseria-Ernzerhof (HSE) + D3 hybrid functional.

View Article and Find Full Text PDF

Aromatic organometallic complexes, such as ferrocene and the "inverse sandwich complex" [NaCp], are stabilized via charge-transfer (C-T) interactions and cation-π interactions (i.e., charge-induced dipole and charge-quadrupole interactions).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!