Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Existing methods for automated coronary artery branch labeling in cardiac CT angiography face two limitations: 1) inability to model overall correlation of branches, since differences between branches cannot be captured directly. 2) a serious class imbalance between main and side branches.
Methods And Procedures: Inspired by the application of Transformer in sequence data, we propose a topological Transformer network (TTN), which solves the vessel branch labeling from a novel perspective of sequence labeling learning. TTN detects differences between branches by establishing their overall correlation. A topological encoding that represents the positions of vessel segments in the artery tree, is proposed to assist the model in classifying branches. Also, a segment-depth loss is introduced to solve the class imbalance between main and side branches.
Results: On a dataset with 325 CCTA, our method obtains the best overall result on all branches, the best result on side branches, and a competitive result on main branches.
Conclusion: TTN solves two limitations in existing methods perfectly, thus achieving the best result in coronary artery branch labeling task. It is the first Transformer based vessel branch labeling method and is notably different from previous methods.
Clinical Impact: This Pre-Clinical Research can be integrated into a computer-aided diagnosis system to generate cardiovascular disease diagnosis report, assisting clinicians in locating the atherosclerotic plaques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706468 | PMC |
http://dx.doi.org/10.1109/JTEHM.2023.3329031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!