A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reproducibility evaluation of the effects of MRI defacing on brain segmentation. | LitMetric

Reproducibility evaluation of the effects of MRI defacing on brain segmentation.

J Med Imaging (Bellingham)

The Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States.

Published: November 2023

Purpose: Recent advances in magnetic resonance (MR) scanner quality and the rapidly improving nature of facial recognition software have necessitated the introduction of MR defacing algorithms to protect patient privacy. As a result, there are a number of MR defacing algorithms available to the neuroimaging community, with several appearing in just the last 5 years. While some qualities of these defacing algorithms, such as patient identifiability, have been explored in the previous works, the potential impact of defacing on neuroimage processing has yet to be explored.

Approach: We qualitatively evaluate eight MR defacing algorithms on 179 subjects from the OASIS-3 cohort and 21 subjects from the Kirby-21 dataset. We also evaluate the effects of defacing on two neuroimaging pipelines-SLANT and FreeSurfer-by comparing the segmentation consistency between the original and defaced images.

Results: Defacing can alter brain segmentation and even lead to catastrophic failures, which are more frequent with some algorithms, such as Quickshear, MRI_Deface, and FSL_deface. Compared to FreeSurfer, SLANT is less affected by defacing. On outputs that pass the quality check, the effects of defacing are less pronounced than those of rescanning, as measured by the Dice similarity coefficient.

Conclusions: The effects of defacing are noticeable and should not be disregarded. Extra attention, in particular, should be paid to the possibility of catastrophic failures. It is crucial to adopt a robust defacing algorithm and perform a thorough quality check before releasing defaced datasets. To improve the reliability of analysis in scenarios involving defaced MRIs, it is encouraged to include multiple brain segmentation pipelines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10704191PMC
http://dx.doi.org/10.1117/1.JMI.10.6.064001DOI Listing

Publication Analysis

Top Keywords

defacing algorithms
16
defacing
12
brain segmentation
12
effects defacing
12
catastrophic failures
8
quality check
8
algorithms
5
reproducibility evaluation
4
effects
4
evaluation effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!