Variants in the gap junction beta-2 () gene are the most common cause of hereditary hearing impairment. However, how variants lead to local physicochemical and structural changes in the hexameric ion channels of connexin 26 (Cx26), resulting in hearing impairment, remains elusive. In this study, using molecular dynamics (MD) simulations, we showed that detached inner-wall N-terminal "plugs" aggregated to reduce the channel ion flow in a highly prevalent V37I variant in humans. To examine the predictive ability of the computational platform, an artificial mutant, V37M, of which the effect was previously unknown in hearing loss, was created. Microsecond simulations showed that homo-hexameric V37M Cx26 hemichannels had an abnormal affinity between the inner edge and N-termini to block the narrower side of the cone-shaped Cx26, while the most stable hetero-hexameric channels did not. From the perspective of the conformational energetics of WT and variant Cx26 hexamers, we propose that unaffected carriers could result from a conformational predominance of the WT and pore-shrinkage-incapable hetero-hexamers, while mice with homozygous variants can only harbor an unstable and dysfunctional N-termini-blocking V37M homo-hexamer. Consistent with these predictions, homozygous V37M transgenic mice exhibited apparent hearing loss, but not their heterozygous counterparts, indicating a recessive inheritance mode. Reduced channel conductivity was found in outer sulcus and Claudius cells but not in cells. We view that the current computational platform could serve as an assessment tool for the pathogenesis and inheritance of -related hearing impairments and other diseases caused by connexin dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700547 | PMC |
http://dx.doi.org/10.1016/j.csbj.2023.11.026 | DOI Listing |
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFFASEB J
January 2025
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.
Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!