Colloidal transport phenomena in dynamic, pulsating porous materials.

AIChE J

Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States.

Published: December 2023

We study the transport phenomena of colloidal particles embedded within a moving array of obstacles that mimics a dynamic, time-varying porous material. While colloidal transport in an array of stationary obstacles ("passive" porous media) has been well studied, we lack the fundamental understanding of colloidal diffusion in a nonequilibrium porous environment. We combine Taylor dispersion theory, Brownian dynamics simulations, and optical tweezer experiments to study the transport of tracer colloidal particles in an oscillating lattice of obstacles. We discover that the dispersion of tracer particles is a non-monotonic function of oscillation frequency and exhibits a maximum that exceeds the Stokes-Einstein-Sutherland diffusivity in the absence of obstacles. By solving the Smoluchowski equation using a generalized dispersion framework, we demonstrate that the enhanced transport of the tracers depends critically on both the direct interparticle interactions with the obstacles and the fluid-mediated, hydrodynamic interactions generated by the moving obstacles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706601PMC
http://dx.doi.org/10.1002/aic.18215DOI Listing

Publication Analysis

Top Keywords

colloidal transport
8
transport phenomena
8
study transport
8
colloidal particles
8
obstacles
6
colloidal
5
phenomena dynamic
4
dynamic pulsating
4
porous
4
pulsating porous
4

Similar Publications

Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.

View Article and Find Full Text PDF

Towards a better knowledge of U(VI) speciation in weakly alkaline solution through an in-depth study of U(VI) intrinsic colloids.

Chemosphere

December 2024

Institut de Chimie Séparative de Marcoule, CEA, UMR 5257 CEA-CNRS-UM-ENSCM, 30207 Bagnols-sur-Cèze, France. Electronic address:

The formation of U(VI) intrinsic colloids has a non-negligible impact on the dissemination of actinides in the environment. It is therefore essential to better identify their nature, formation conditions, and stability domains. These specific points are especially important since the behavior of these elements in environment is generally estimated by geochemical transport modeling.

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

December 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF

This work introduces CAECENET, a new system capable of automatically retrieving columnar and vertically-resolved aerosol properties running the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm using sun-sky photometer (aerosol optical depth, AOD; and sky radiance measurements) and ceilometer (range corrected signal; RCS) data as input. This method, so called GRASPpac, is implemented in CAECENET, which assimilates sun-sky photometers data from CÆLIS database and ceilometer data from ICENET database (Iberian Ceilometer Network). CAECENET allows for continuous and near-real-time monitoring of both vertical and columnar aerosol properties.

View Article and Find Full Text PDF

The adhesion of marine organisms to marine facilities negatively impacts human productivity. This phenomenon, known as marine fouling, constitutes a serious issue in the marine equipment industry. It increases resistance for ships and their structures, which, in turn, raises fuel consumption and reduces ship speed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!