Banks and Sol. is a rough flowering plant of the Boraginaceae family native to Eastern Mediterranean region that is widely used in traditional herbal medicine, mainly for the treatment of wounds, abdominal pain, and arthritis, to name a few. This article aims to gather knowledge related to the medicinal properties of . Specifically, it summarizes its traditional uses and pharmacological activities in the treatment of various diseases. Moreover, its botanical, ecological, and phytochemical characteristics are also discussed. Research showed that this plant is rich in pyrrolizidine alkaloids, particularly in the leaves. Other bioactive metabolites identified in this plant include flavonoids, phenolic acids, triterpenes, organic acids, and volatile organic compounds. These phytochemicals are responsible for the reported pharmacological properties of , including antimicrobial, antioxidant, anticancer, anti-inflammatory, antiarthritic, gastric protective, antidiabetic, and pro-wound healing. This warrants further investigation into the molecular mechanism of action behind the observed effects to elucidate its therapeutic potential. Nevertheless, more research on this plant is needed to ensure its efficacy and safety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10704471 | PMC |
http://dx.doi.org/10.3389/fphar.2023.1301154 | DOI Listing |
Pain
February 2025
Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016.
Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405.
Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cancer Biology & Genetics Program, Sloan Kettering Institute, New York, NY 10065.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi, Jharkhand 835215, India.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, extracellular amyloid-β (Aβ) plaque accumulation, and intracellular neurofibrillary tangles. Recent efforts to find effective therapies have increased interest in natural compounds with multifaceted effects on AD pathology. This study explores natural compounds for their potential to mitigate AD pathology using molecular docking, ADME screening, and assays, with ruscogenin─a steroidal sapogenin from emerging as a promising candidate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!