The primary cilium is a non-motile sensory organelle that transduces environmental cues into cellular responses. It comprises an axoneme, a core of nine doublet microtubules (MTs) coated by a specialized membrane populated by receptors, and a high density of ion channels. Dysfunctional primary cilia generate the pathogenesis of several diseases known as ciliopathies. However, the electrical role of MTs in ciliary signaling remains largely unknown. Herein, we determined by the patch clamp technique the electrical activity of cytoplasmic and axonemal MTs from wild-type LLC-PK1 renal epithelial cells. We observed electrical oscillations with fundamental frequencies at ∼39 Hz and ∼93 Hz in sheets of cytoplasmic MTs. We also studied and isolated, intact and Triton X-permeabilized primary cilia, observing electrical oscillations with peak frequencies at either 29-49 Hz (non-permeabilized) or ∼40-49 Hz (permeabilized) and ∼93 Hz (both). We applied Empirical Mode Decomposition (EMD), Continuous Wavelet Transform (CWT), and Cross-Correlation Analysis (CCA) to assess the differences and the coherence in the Time-Frequency domains of electrical oscillations between cytoplasmic and axonemal MTs. The data indicate that axonemal and cytoplasmic MTs show different patterns of electrical oscillations preserving coherence at specific frequency peaks that may serve as electromagnetic communication between compartments. Further, the electrical behavior of axonemal MTs was modified by siRNA deletion of polycystin-2 (PC2), which lengthens primary cilia, thus linking ciliary channels to the morphological and electrical behavior of cilia in ciliopathies. The encompassed evidence indicates that the primary cilium behaves as an electrical antenna, with an excitable MT structure that produces electrical oscillations whose synchronization and propagation constitute a novel cell signaling mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702962 | PMC |
http://dx.doi.org/10.3389/fmolb.2023.1214532 | DOI Listing |
Adv Mater
December 2024
Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.
Advancements in stimuli-driven nanoactuators necessitate the discovery of photo-switchable, self-contained semiconductor nanostructures capable of precise mechanical responses. The reversible assembly of 0D CsBiI halide perovskite nanoplatelets (NPLs) between stacked and scattered configurations are demonstrated under light and dark, respectively. This sunlight-triggered perpetual flipping of the NPLs, occurring in less than a minute, is associated with a color change between brown and red.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Institute of Physiology I, Münster University, Münster, Germany. Electronic address:
Spike-wave-discharges (SWD) are the electrophysiological hallmark of absence epilepsy. SWD are generated in the thalamo-cortical network and a seizure onset zone was identified in the somatosensory cortex (S1). We have shown before that inhibition of the centromedian thalamic nucleus (CM) in GAERS rats resulted in a selective suppression of the spike component while rhythmic cortical 5-9 Hz oscillations remained present.
View Article and Find Full Text PDFFront Netw Physiol
December 2024
Department of Physics, University of Alberta, Edmonton, AB, Canada.
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology.
View Article and Find Full Text PDFHeliyon
December 2024
Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China.
Introduction: Transcranial electrical stimulation (tES), including transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS), is widely studied for its potential to modulate brain oscillations and connectivity, offering treatment options for neurological disorders like Alzheimer's, Parkinson's, and insomnia. In this study, we focus on investigating the efficacy of tACS and tDCS in entraining intrinsic cortical network oscillations through a computational model.
Materials And Methods: We developed a 2D computational cortical neuron model with 2000 neurons (1600 pyramidal and 400 inhibitory), based on the Izhikevich neuron model.
Phys Rev Lett
December 2024
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China.
We present a novel resonance mode in capacitive radio frequency (rf) discharges in the presence of an oblique magnetic field at low pressures. We observe the self-excitation of high-frequency harmonics of the current in magnetized capacitive rf discharges through the magnetized plasma series resonance (MPSR) induced by applying a low-frequency power. Utilizing an equivalent circuit model, we reveal that these harmonics arise from the hybrid combination of the magnetic gyration of electrons and the PSR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!