The hippocampal formation is vulnerable to the process of normal aging. In humans, the extent of this age-related deterioration varies among individuals. Long-Evans rats replicate these individual differences as they age, and therefore they serve as a valuable model system to study aging in the absence of neurodegenerative diseases. In the Morris water maze, aged memory-unimpaired (AU) rats navigate to remembered goal locations as effectively as young rats and demonstrate minimal alterations in physiological markers of synaptic plasticity, whereas aged memory-impaired (AI) rats show impairments in both spatial navigation skills and cellular and molecular markers of plasticity. The present study investigates whether another cognitive domain is affected similarly to navigation in aged Long-Evans rats. We tested the ability of young, AU, and AI animals to recognize novel object-place-context (OPC) configurations and found that performance on the novel OPC recognition paradigm was significantly correlated with performance on the Morris water maze. In the first OPC test, young and AU rats, but not AI rats, successfully recognized and preferentially explored objects in novel OPC configurations. In a second test with new OPC configurations, all age groups showed similar OPC associative recognition memory. The results demonstrated similarities in the behavioral expression of associative, episodic-like memory between young and AU rats and revealed age-related, individual differences in functional decline in both navigation and episodic-like memory abilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843702PMC
http://dx.doi.org/10.1002/hipo.23591DOI Listing

Publication Analysis

Top Keywords

long-evans rats
12
young rats
12
opc configurations
12
rats
9
learning impairment
8
aged long-evans
8
individual differences
8
morris water
8
water maze
8
novel opc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!