All sorts of chemicals get degraded under various environmental stresses, and the degradates coexist with the parent compounds as mixtures in the environment. Antibiotics emerge as an additional concern due to the bioactive nature of both the parent compound and degradation products and their combined exposure to the environment. Therefore, environmental risk assessment of antibiotics and their degradation products is very much necessary. In this direction, we made use of new approach methodologies (NAMs) and machine-learning algorithms. In this study, we have developed a robust and predictive mixture-quantitative structure-activity relationship (QSAR) model with promising quality and predictability (internal: MAE = 0.085, = 0.849, external: MAE = 0.090, and = 0.859) for predicting the toxicity of the mixtures of a class of antibiotics and their degradation products. To obtain the predictive model, toxicity data of 78 binary fluoroquinolone mixtures in (endpoint: log 1/IC50 in molar) have been utilized. We have used only 0D-2D descriptors to efficiently encode the structural features of mixture components without any additional complexities. The optimization of the class of mixture descriptors has been performed in this study by using three different mixing rules (linear combination of molecular contributions, the squared molecular contributions, and the norm of molecular contributions). Different machine-learning approaches namely, random forest (RF), ada boost, gradient boost (GB), extreme gradient boost (XGB), support vector machine (SVM), linear support vector machine (LSVM), and ridge regression (RR) have been employed here apart from the conventional partial least squares (PLS) regression to optimize the modeling approach. A rigorous validation protocol has been used for assessing the goodness-of-fit, robustness, and external predictability of the models. Finally, the toxicity of possible untested mixtures of different photodegradation products of fluoroquinolones has been predicted using the best model reported in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3em00445g | DOI Listing |
Nanotechnology
December 2024
CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.
Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).
View Article and Find Full Text PDFMed Phys
December 2024
Department of Physics, Lakehead University, Thunder Bay, Ontario, Canada.
Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands.
The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America.
Millions of tons of polyethylene terephthalate (PET) are produced each year, however only ~30% of PET is currently recycled in the United States. Improvement of PET recycling and upcycling practices is an area of ongoing research. One method for PET upcycling is chemical depolymerization (through hydrolysis or aminolysis) into aromatic monomers and subsequent biodegradation.
View Article and Find Full Text PDFPLoS One
December 2024
Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America.
The bagrada bug, Bagrada hilaris (Burmeister), is an emerging agricultural pest in the Americas, threatening agricultural production in the southwestern United States, Mexico and Chile, as well as in the Old World (including Africa, South Asia and, more recently, Mediterranean areas of Europe). Substantive transcriptomic sequence resources for this damaging species would be beneficial towards understanding its capacity for developing insecticide resistance, identifying viruses that may be present throughout its population and identifying genes differentially expressed across life stages that could be exploited for biomolecular pesticide formulations. This study establishes B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!