As a pivotal defensive line against multitudinous malignant tumors, natural killer (NK) cells exist in the tumor microenvironment (TME). RAD18 E3 Ubiquitin Protein Ligase (RAD18) has been reported to foster the malignant progression of multiple cancers, but its effect on NK function has not been mined. Here, the study was designed to mine the mechanism by which RAD18 regulates the killing effect of NK cells on colorectal cancer (CRC) cells. Expression of E2F Transcription Factor 7 (E2F7) and RAD18 in CRC tissues, their correlation, binding sites, and RAD18 enrichment pathway were analyzed by bioinformatics. Expression of E2F7 and RAD18 in cells was assayed by qRT-PCR and western blot. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) assay verified the regulatory relationship between E2F7 and RAD18. CCK-8 assay was utilized to assay cell viability, colony formation assay to detect cell proliferation, lactate dehydrogenase (LDH) test to assay NK cell cytotoxicity, ELISA to assay levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and immunofluorescence to detect expression of toxic molecules perforin and granzyme B. High expression of RAD18 and E2F7 was found in CRC tissues and cells. Silencing RAD18 could hamper the proliferation of CRC cells, foster viability and cytotoxicity of NK cells, and increase the secretion of GM-CSF, TNF-α, IFN-γ as well as the expression of perforin and granzyme B. Additionally, ChIP and dual-luciferase reporter assay ascertained the binding relationship between RAD18 promoter region and E2F7. E2F7 could activate the transcription of RAD18, and silencing RAD18 reversed the inhibitory effect of E2F7 overexpression on NK cell killing. This work clarified the inhibitory effect of the E2F7/RAD18 axis on NK cell killing in CRC, and proffered a new direction for immunotherapy of CRC in targeted immune microenvironment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091666 | PMC |
http://dx.doi.org/10.4014/jmb.2308.08026 | DOI Listing |
Emerg Microbes Infect
December 2025
State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China.
The nuclear-cytoplasmic trafficking of matrix proteins (M) is essential for henipavirus budding, with M protein ubiquitination playing a pivotal role in this dynamic process. Despite its importance, the intricacies of the M ubiquitination cascade have remained elusive. In this study, we elucidate a novel mechanism by which Nipah virus (NiV), a highly pathogenic henipavirus, utilizes a ubiquitination complex involving the E2 ubiquitin-conjugating enzyme RAD6A and the E3 ubiquitin ligase RAD18 to ubiquitinate the virus's M protein, thereby facilitating its nuclear-cytoplasmic trafficking.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China. Electronic address:
The 2-((2-chloroethyl)amino)ethane-1-thiol (CAET)-based chemical trapping strategy is a practical tool for mechanistic studies of E3-catalysed ubiquitination. However, the construction of ubiquitination intermediate mimics (E2-Ub-substrate conjugates) via CAET has been limited to peptides, while its application to folded protein substrates remains unexplored. Here, we report that disulfide bond formation between E2-Ub (RAD6A-Ub) and the folded protein substrate PCNA (proliferating cell nuclear antigen) occurs upon the addition of the PCNA-associated E3 ligase RAD18.
View Article and Find Full Text PDFVirulence
December 2024
Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China.
DNA damage repair is a crucial cellular mechanism for rectifying DNA lesions arising during growth and development. Among the various repair pathways, postreplication repair (PRR) plays a pivotal role in resolving single-stranded gaps induced by DNA damage. However, the contribution of PRR to virulence remains elusive in the fungal pathogen .
View Article and Find Full Text PDFCell Oncol (Dordr)
November 2024
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Purpose: Posttranslational modification significantly contributes to the transcriptional diversity of tumors. Adenosine deaminase acting on RNA 1 (ADAR1) and its mediated adenosine-to-inosine (A-to-I) editing have been reported to influence tumorigenesis across various cancer types. Nevertheless, the relationship between ADAR1 and radioresistence remains to be elucidated.
View Article and Find Full Text PDFFront Med (Lausanne)
October 2024
University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!