RNA Aptamer-Mediated Gene Activation Systems for Inducible Transgene Expression in Animal Cells.

ACS Synth Biol

Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Published: January 2024

AI Article Synopsis

  • RNA expression analyses can provide insights into cellular conditions and intracellular gene regulation, enabling real-time monitoring of RNA levels in living cells.
  • The study introduces the RAMGA system, which uses RNA aptamers for gene activation by linking DNA-binding domains and transactivators through target RNA, ultimately enhancing gene expression in engineered CHO cells.
  • This RNA-triggered system allows for precise control and detection of gene expression in response to mRNA levels, paving the way for new gene circuits and RNA detection tools.

Article Abstract

RNA expression analyses can be used to obtain various information from inside cells, such as physical conditions, the chemical environment, and endogenous signals. For detecting RNA, the system regulating intracellular gene expression has the potential for monitoring RNA expression levels in real time within living cells. Synthetic biology provides powerful tools for detecting and analyzing RNA inside cells. Here, we devised an RNA aptamer-mediated gene activation system, RAMGA, to induce RNA-triggered gene expression activation by employing an inducible complex formation strategy grounded in synthetic biology. This methodology connects DNA-binding domains and transactivators through target RNA using RNA-binding domains, including phage coat proteins. MS2 bacteriophage coat protein fused with a transcriptional activator and PP7 bacteriophage coat protein fused with the tetracycline repressor (tetR) can be bridged by target RNA encoding MS2 and PP7 stem-loops, resulting in transcriptional activation. We generated recombinant CHO cells containing an inducible GFP expression module governed by a minimal promoter with a tetR-responsive element. Cells carrying the trigger RNA exhibited robust reporter gene expression, whereas cells lacking it exhibited no expression. GFP expression was upregulated over 200-fold compared with that in cells without a target RNA expression vector. Moreover, this system can detect the expression of mRNA tagged with aptamer tags and modulate reporter gene expression based on the target mRNA level without affecting the expression of the original mRNA-encoding gene. The RNA-triggered gene expression systems developed in this study have potential as a new platform for establishing gene circuits, evaluating endogenous gene expression, and developing novel RNA detectors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.3c00472DOI Listing

Publication Analysis

Top Keywords

gene expression
24
expression
15
rna expression
12
target rna
12
rna
11
gene
10
rna aptamer-mediated
8
aptamer-mediated gene
8
gene activation
8
cells
8

Similar Publications

Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.

View Article and Find Full Text PDF

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

Primitive to visceral endoderm maturation is essential for mouse epiblast survival beyond implantation.

iScience

January 2025

Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.

The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.

View Article and Find Full Text PDF

A Novel COL7A1 Mutation in a Patient With Dystrophic Epidermolysis Bullosa. Successful Treatment With Upadacitinib.

Clin Cosmet Investig Dermatol

January 2025

Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China.

Dystrophic epidermolysis bullosa (DEB) is a heterogeneous and rare genetic skin disease caused by mutations in the gene, which encodes Type VII collagen. The absence or dysfunction of Type VII collagen can cause the dense lower layer of the basal membrane zone of the skin to separate from the dermis, leading to blister formation and various complications. In different DEB subtypes, the severity of the phenotype is associated, to some extent, with the outcome of Type VII collagen caused by mutations in the gene, which may be reduced in expression, remarkably reduced, or completely absent.

View Article and Find Full Text PDF

Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!