Evaluation of changes in corneal biomechanics after orthokeratology using Corvis ST.

Cont Lens Anterior Eye

National Clinical Research Center for Ocular Diseases, Eye Hospital, WenZhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Published: February 2024

Purpose: To investigate the alterations in corneal biomechanical metrics induced by orthokeratology (ortho-k) using Corvis ST and to determine the factors influencing these changes.

Method: A prospective observational study was conducted to analyze various Corvis ST parameters in 32 children with low to moderate myopia who successfully underwent ortho-k lens fitting. Corneal biomechanical measurements via Corvis ST were acquired at six distinct time points: baseline (pre) and 2 h (pos2h), 6 h (pos6h), and 10 h (pos10h) following the removal of the first overnight wear ortho-k, one week (pos1w) and one month (pos1m) subsequent to the initiation of ortho-k.

Result: Significant differences were observed in Corvis ST Biomechanical parameters DAR2, IIR, CBI, and cCBI post ortho-k intervention. The integration of covariates (CCT, SimK, and bIOP) mitigated the differences in DAR2, IIR, and cCBI, but not in CBI. Initially, the stiffness parameter at first applanation, SP-A1, did not demonstrate significant variations, but after adjusting for covariates, noticeable differences over time were observed. The Stress-Strain Indeces, SSIv1 and SSIv2, did not manifest considerable changes over time, irrespective of the adjustment for covariates. No significant disparities were identified among different ortho-k lens brands.

Conclusion: Corneal biomechanics remained consistent throughout the one-month period of ortho-k lens wear. The observed changes in Corvis ST parameters subsequent ortho-k are primarily attributable to alterations in corneal pachymetry and morphology, rather than actual alterations in corneal biomechanics. The stability of corneal biomechanics post ortho-k treatment suggests the safety of this approach for adolescents from a corneal biomechanics perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clae.2023.102100DOI Listing

Publication Analysis

Top Keywords

corneal biomechanics
20
alterations corneal
12
ortho-k lens
12
corneal
8
corneal biomechanical
8
ortho-k
8
corvis parameters
8
dar2 iir
8
post ortho-k
8
corvis
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!