Purpose: To investigate the alterations in corneal biomechanical metrics induced by orthokeratology (ortho-k) using Corvis ST and to determine the factors influencing these changes.
Method: A prospective observational study was conducted to analyze various Corvis ST parameters in 32 children with low to moderate myopia who successfully underwent ortho-k lens fitting. Corneal biomechanical measurements via Corvis ST were acquired at six distinct time points: baseline (pre) and 2 h (pos2h), 6 h (pos6h), and 10 h (pos10h) following the removal of the first overnight wear ortho-k, one week (pos1w) and one month (pos1m) subsequent to the initiation of ortho-k.
Result: Significant differences were observed in Corvis ST Biomechanical parameters DAR2, IIR, CBI, and cCBI post ortho-k intervention. The integration of covariates (CCT, SimK, and bIOP) mitigated the differences in DAR2, IIR, and cCBI, but not in CBI. Initially, the stiffness parameter at first applanation, SP-A1, did not demonstrate significant variations, but after adjusting for covariates, noticeable differences over time were observed. The Stress-Strain Indeces, SSIv1 and SSIv2, did not manifest considerable changes over time, irrespective of the adjustment for covariates. No significant disparities were identified among different ortho-k lens brands.
Conclusion: Corneal biomechanics remained consistent throughout the one-month period of ortho-k lens wear. The observed changes in Corvis ST parameters subsequent ortho-k are primarily attributable to alterations in corneal pachymetry and morphology, rather than actual alterations in corneal biomechanics. The stability of corneal biomechanics post ortho-k treatment suggests the safety of this approach for adolescents from a corneal biomechanics perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clae.2023.102100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!