A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxide-Halide Perovskite Composites for Simultaneous Recycling of Lead Zirconate Titanate Piezoceramics and Methylammonium Lead Iodide Solar Cells. | LitMetric

Global concerns over energy availability and the environment impose an urgent requirement for sustainable manufacturing, usage, and disposal of electronic components. Piezoelectric and photovoltaic components are being extensively used. They contain the hazardous element, Pb (e.g., in widely used and researched Pb(Zr,Ti)O and halide perovskites), but they are not being properly recycled or reused. This work demonstrates the fabrication of upside-down composite sensor materials using crushed ceramic particles recycled from broken piezoceramics, polycrystalline halide perovskite powder collected from waste dye-sensitized solar cells, and crystal particles of a Cd-based perovskite composition, CHN(CH)CdBr Cl . The piezoceramic and halide perovskite particles are used as filler and binder, respectively, to show a proof of concept for the chemical and microstructural compatibility between the oxide and halide perovskite compounds while being recycled simultaneously. Production of the recycled and reusable materials requires only a marginal energy budget while achieving a very high material densification of >92%, as well as a 40% higher piezoelectric voltage coefficient, i.e., better sensing capability, than the pristine piezoceramics. This work thus offers an energy- and environmentally friendly approach to the recycling of hazardous elements as well as giving a second life to waste piezoelectric and photovoltaic components.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202300830DOI Listing

Publication Analysis

Top Keywords

halide perovskite
12
solar cells
8
piezoelectric photovoltaic
8
photovoltaic components
8
oxide-halide perovskite
4
perovskite composites
4
composites simultaneous
4
simultaneous recycling
4
recycling lead
4
lead zirconate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!