We present the possibility of x-ray magnetic circular dichroism on RuO_{2} with collinear antiferromagnetism (AFM). Given that the crystal symmetry breaks the time reversal symmetry when the antiparallel spin aligns along the [100] direction, the expectation vector of the anisotropic magnetic dipole operator ⟨t⟩ remains uncanceled along the [010] direction. Our Letter reveals that the magnetic dipole (T_{z}) term in the x-ray magnetic circular dichroism is induced by the residual ⟨t⟩. Because the features of the magnetic moment can be detected via absorption measurements even in the AFM, this technique will be useful for determining the magnetic phase, the Van Vleck-type paramagnet or the excitonic AFM in (t_{2g})^{4} system.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.216501DOI Listing

Publication Analysis

Top Keywords

magnetic dipole
12
anisotropic magnetic
8
t_{2g}^{4} system
8
x-ray magnetic
8
magnetic circular
8
circular dichroism
8
magnetic
7
ferroic order
4
order anisotropic
4
dipole term
4

Similar Publications

In this paper the finite-difference time-domain general vector auxiliary differential equation method [Opt. Express14, 8305 (2006)10.1364/OE.

View Article and Find Full Text PDF

Optical metasurfaces offer significant advantages in enhancing the speed, efficiency, and miniaturization of imaging systems. However, most existing metasurfaces are limited to static functionalities and lack reconfigurability, which is a key feature for practical applications in dynamic environments. In this work, we demonstrate a reconfigurable optical metasurface capable of switching between two distinct imaging functions (edge detection and bright-field imaging) within the visible spectrum.

View Article and Find Full Text PDF

The third harmonic (TH) signals in subwavelength scale devices have a wide range of applications, including nano-laser, microscopic imaging, sensing, and so on. However, the limited TH signal intensity still restricts practical applications due to the inherently small nonlinear coefficient in material and relatively weak confinement of the pump electromagnetic field. Here, we present the enhancement of TH signals in the isotropic Si nanosphere and the Au core/Si shell nanosphere exhibiting anapole mode excited by tightly focused radially polarized beams.

View Article and Find Full Text PDF

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

A two-degree-of-freedom bistable energy harvester with a spring-magnet oscillator designed for ultra-low frequency vibration energy harvesting is presented in this paper. It combines magnetic plucking frequency upconversion and a variable potential function to achieve a high-efficiency response while also being suitably installed for applications with spatial limitations. A lumped parameter model of the piezoelectric energy harvester and the magnetic dipoles is applied to develop the theoretical model for the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!