Mild aqueous Zn batteries (AZBs) generally suffer a low-voltage/energy dilemma, which compromises their competitiveness for large-scale energy storage. Pushing Zn anode potential downshift is an admissible yet underappreciated approach for high-voltage/energy AZBs. Herein, with a mild hybrid electrolyte containing in situ-derived diluted strongly-coordinated Zn-cosolvent pairs, a considerable Zn anode potential downshift is initially achieved for high-voltage Zn-based hybrid batteries. The chosen butylpyridine cosolvent not only strongly coordinates Zn ions but also acts as a hydrogen-bond end-capping agent to inhibit hydrogen evolution reaction (HER). The electrolyte environment with hetero-solvation-diluted strongly-coordinated Zn-cosolvent pairs remarkably lowers Zn activity, responsible for the Zn electrode potential downshift (-0.330 V vs Zn), confirming to modified Nernst law (ΔE = ln[a(Zn )/a(coordinated solvent)]). With the diluted Zn-containing hybrid electrolyte, the Zn//Zn symmetric cell in the hybrid electrolyte shows a long lifespan over 1270 h at a stripping/plating capacity of 0.4 mA h cm. Compared with in common hybrid electrolytes, the as-assembled Zn-MnO hybrid battery delivers a ca. 0.278 V enhanced voltage plateau (1.57 V) and a long-term cyclability of over 736 cycles. This work opens a new avenue toward Zn anode potential downshift for high-voltage AZBs, which can extend to other mild metal batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202301081DOI Listing

Publication Analysis

Top Keywords

potential downshift
16
strongly-coordinated zn-cosolvent
12
zn-cosolvent pairs
12
anode potential
12
hybrid electrolyte
12
hetero-solvation-diluted strongly-coordinated
8
electrode potential
8
hybrid batteries
8
hybrid
7
potential
5

Similar Publications

Several mutations of the uppermost arginine, R219, in the voltage-sensing sliding helix S4 of cardiac sodium channel Nav1.5 are reported in the ClinVar databases, but the clinical significance of the respective variants is unknown (VUSs). AlphaFold 3 models predicted a significant downshift of S4 in the R219C VUS.

View Article and Find Full Text PDF

MEDOC: A Fast, Scalable, and Mathematically Exact Algorithm for the Site-Specific Prediction of the Protonation Degree in Large Disordered Proteins.

J Chem Inf Model

January 2025

Max-Planck-Institut für Immunbiologie und Epigenetik (MPI-IE), Stübeweg 51, 79108 Freiburg im Breisgau, Germany.

Intrinsically disordered regions are found in most eukaryotic proteins and are enriched with positively and negatively charged residues. While it is often convenient to assume that these residues follow their model-compound p values, recent work has shown that local charge effects (charge regulation) can upshift or downshift side chain p values with major consequences for molecular function. Despite this, charge regulation is rarely considered when investigating disordered regions.

View Article and Find Full Text PDF

Towards Rational Design of Confined Catalysis in Carbon Nanotube by Machine Learning and Grand Canonical Monte Carlo Simulations.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.

The microenvironment is recognized to be as crucial as active sites in heterogeneous catalysis. It was found that the catalytic activity of a set of chemical reactions can be significantly influenced by the confined space of carbon nanotubes (CNTs), with some reactions showing superior activity, while others experience a negative impact. The rational design of confined catalysis must rely on the accurate insights of confined microenvironment.

View Article and Find Full Text PDF

Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.

View Article and Find Full Text PDF

Concurrently Boosting Activity and Stability of Oxygen Reduction Reaction Catalysts via Judiciously Crafting Fe-Mn Dual Atoms for Fuel Cells.

Nanomicro Lett

December 2024

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.

The ability to unlock the interplay between the activity and stability of oxygen reduction reaction (ORR) represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells. Herein, we report an effective strategy to concurrent enhance the activity and stability of ORR catalysts via constructing atomically dispersed Fe-Mn dual-metal sites on N-doped carbon (denoted (FeMn-DA)-N-C) for both anion-exchange membrane fuel cells (AEMFC) and proton exchange membrane fuel cells (PEMFC). The (FeMn-DA)-N-C catalysts possess ample dual-metal atoms consisting of adjacent Fe-N and Mn-N sites on the carbon surface, yielded via a facile doping-adsorption-pyrolysis route.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!