Background: Acquired estrogen receptor alpha (ER/ESR1) mutations commonly cause endocrine resistance in ER+ metastatic breast cancer (mBC). Lasofoxifene, a novel selective ER modulator, stabilizes an antagonist conformation of wild-type and ESR1-mutated ER-ligand binding domains, and has antitumor activity in ESR1-mutated xenografts.

Patients And Methods: In this open-label, randomized, phase II, multicenter, ELAINE 1 study (NCT03781063), we randomized women with ESR1-mutated, ER+/human epidermal growth factor receptor 2 negative (HER2-) mBC that had progressed on an aromatase inhibitor (AI) plus a cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) to oral lasofoxifene 5 mg daily or IM fulvestrant 500 mg (days 1, 15, and 29, and then every 4 weeks) until disease progression/toxicity. The primary endpoint was progression-free survival (PFS); secondary endpoints were safety/tolerability.

Results: A total of 103 patients received lasofoxifene (n = 52) or fulvestrant (n = 51). The most current efficacy analysis showed that lasofoxifene did not significantly prolong median PFS compared with fulvestrant: 24.2 weeks (∼5.6 months) versus 16.2 weeks (∼3.7 months; P = 0.138); hazard ratio 0.699 (95% confidence interval 0.434-1.125). However, PFS and other clinical endpoints numerically favored lasofoxifene: clinical benefit rate (36.5% versus 21.6%; P = 0.117), objective response rate [13.2% (including a complete response in one lasofoxifene-treated patient) versus 2.9%; P = 0.124], and 6-month (53.4% versus 37.9%) and 12-month (30.7% versus 14.1%) PFS rates. Most common treatment-emergent adverse events with lasofoxifene were nausea, fatigue, arthralgia, and hot flushes. One death occurred in the fulvestrant arm. Circulating tumor DNA ESR1 mutant allele fraction (MAF) decreased from baseline to week 8 in 82.9% of evaluable lasofoxifene-treated versus 61.5% of fulvestrant-treated patients.

Conclusions: Lasofoxifene demonstrated encouraging antitumor activity versus fulvestrant and was well tolerated in patients with ESR1-mutated, endocrine-resistant mBC following progression on AI plus CDK4/6i. Consistent with target engagement, lasofoxifene reduced ESR1 MAF, and to a greater extent than fulvestrant. Lasofoxifene may be a promising targeted treatment for patients with ESR1-mutated mBC and warrants further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.annonc.2023.09.3104DOI Listing

Publication Analysis

Top Keywords

lasofoxifene
10
versus fulvestrant
8
metastatic breast
8
breast cancer
8
randomized phase
8
antitumor activity
8
patients esr1-mutated
8
fulvestrant
7
versus
7
esr1-mutated
5

Similar Publications

Selective estrogen receptor degraders (SERDs) deplete the ER signaling pathway via antagonism and degradation of ERα and represent a promising strategy to tackle endocrine resistance. Here, we report a new class of SERDs by pharmacological evolution of a selective estrogen receptor modulator, lasofoxifene. The structure-activity relationship study and efforts to circumvent the issue of human ether-a-go-go-related gene led to the identification of compounds .

View Article and Find Full Text PDF
Article Synopsis
  • Current therapies for ERα-positive breast cancer often face challenges due to clinical resistance, creating a need for new treatment options.
  • Researchers have discovered ERD-1233, an oral drug that effectively degrades the ERα protein through innovative PROTAC technology.
  • In preclinical models, ERD-1233 shows significant tumor regression and growth inhibition, suggesting it could be a valuable new therapy for treating ER+ breast cancer.
View Article and Find Full Text PDF

Estrogen receptor alpha (ERα) plays a critical role in breast cancer (BC) progression, with endocrine therapy being a key treatment for ERα + BC. However, resistance often arises due to somatic mutations in the ERα ligand-binding domain (LBD). Lasofoxifene, a third-generation selective estrogen receptor modulator, has shown promise against Y537S and D538G mutations.

View Article and Find Full Text PDF

Lasofoxifene as a potential treatment for aromatase inhibitor-resistant ER-positive breast cancer.

Breast Cancer Res

June 2024

The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street GCIS W421C, Chicago, IL, 60637, USA.

Background: Breast cancers treated with aromatase inhibitors (AIs) can develop AI resistance, which is often driven by estrogen receptor-alpha (ERα/ESR1) activating mutations, as well as by ER-independent signaling pathways. The breast ER antagonist lasofoxifene, alone or combined with palbociclib, elicited antitumor activities in a xenograft model of ER + metastatic breast cancer (mBC) harboring ESR1 mutations. The current study investigated the activity of LAS in a letrozole-resistant breast tumor model that does not have ESR1 mutations.

View Article and Find Full Text PDF

Objective: The aim of this study was to demonstrate whether lasofoxifene improves vaginal signs/symptoms of genitourinary syndrome of menopause.

Methods: Two identical, phase 3 trials randomized postmenopausal women with moderate to severe vaginal symptoms to oral lasofoxifene 0.25 or 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!