The control of movement in living organisms represents a fundamental task that the brain has evolved to solve. One crucial aspect is how the nervous system organizes the transformation of sensory information into motor commands. These commands lead to muscle activation and subsequent animal movement, which can exhibit complex patterns. One example of such movement is locomotion, which involves the translation of the entire body through space. Central Pattern Generators (CPGs) are neuronal circuits that provide control signals for these movements. Compared to the intricate circuits found in the brain, CPGs can be simplified into networks of neurons that generate rhythmic activation, coordinating muscle movements. Since the 1990s, researchers have developed numerous models of locomotive circuits to simulate different types of animal movement, including walking, flying, and swimming. Initially, the primary goal of these studies was to construct biomimetic robots. However, it became apparent that simplified CPGs alone were not sufficient to replicate the diverse range of adaptive locomotive movements observed in living organisms. Factors such as sensory modulation, higher-level control, and cognitive components related to learning and memory needed to be considered. This necessitated the use of more complex, high-dimensional circuits, as well as novel materials and hardware, in both modeling and robotics. With advancements in high-power computing, artificial intelligence, big data processing, smart materials, and electronics, the possibility of designing a new generation of true bio-mimetic robots has emerged. These robots have the capability to imitate not only simple locomotion but also exhibit adaptive motor behavior and decision-making. This motivation serves as the foundation for the current review, which aims to analyze existing concepts and models of movement control systems. As an illustrative example, we focus on underwater movement and explore the fundamental biological concepts, as well as the mathematical and physical models that underlie locomotion and its various modulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plrev.2023.10.037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!