Objective: Fetal growth restriction is an independent risk factor for fetal death and adverse neonatal outcomes. The main aim of this study was to investigate the diagnostic performance of 32 vs 36 weeks ultrasound of fetal biometry in detecting late-onset fetal growth restriction and predicting small-for-gestational-age neonates.
Data Sources: A systematic search was performed to identify relevant studies published until June 2022, using the databases PubMed, Web of Science, and Scopus.
Study Eligibility Criteria: Cohort studies in low-risk or unselected singleton pregnancies with screening ultrasound performed at ≥32 weeks of gestation were used.
Methods: The estimated fetal weight and abdominal circumference were assessed as index tests for the prediction of small for gestational age (birthweight of <10th percentile) and detecting fetal growth restriction (estimated fetal weight of <10th percentile and/or abdominal circumference of <10th percentile). The quality of the included studies was independently assessed by 2 reviewers using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. For the meta-analysis, hierarchical summary area under the receiver operating characteristic curves were constructed, and quantitative data synthesis was performed using random-effects models.
Results: The analysis included 25 studies encompassing 73,981 low-risk pregnancies undergoing third-trimester ultrasound assessment for growth, of which 5380 neonates (7.3%) were small for gestational age at birth. The pooled sensitivities for estimated fetal weight of <10th percentile and abdominal circumference of <10th percentile in predicting small for gestational age were 36% (95% confidence interval, 27%-46%) and 37% (95% confidence interval, 19%-60%), respectively, at 32 weeks ultrasound and 48% (95% confidence interval, 41%-56%) and 50% (95% confidence interval, 25%-74%), respectively, at 36 weeks ultrasound. The pooled specificities for estimated fetal weight of <10th percentile and abdominal circumference of <10th percentile in detecting small for gestational age were 93% (95% confidence interval, 91%-95%) and 95% (95% confidence interval, 85%-98%), respectively, at 32 weeks ultrasound and 93% (95% confidence interval, 91%-95%) and 97% (95% confidence interval, 85%-98%), respectively, at 36 weeks ultrasound. The observed diagnostic odds ratios for an estimated fetal weight of <10th percentile and an abdominal circumference of <10th percentile in detecting small for gestational age were 8.8 (95% confidence interval, 5.4-14.4) and 11.6 (95% confidence interval, 6.2-21.6), respectively, at 32 weeks ultrasound and 13.3 (95% confidence interval, 10.4-16.9) and 36.0 (95% confidence interval, 4.9-260.0), respectively, at 36 weeks ultrasound. The pooled sensitivity, specificity, and diagnostic odds ratio in predicting fetal growth restriction were 71% (95% confidence interval, 52%-85%), 90% (95% confidence interval, 79%-95%), and 25.8 (95% confidence interval, 14.5-45.8), respectively, at 32 weeks ultrasound and 48% (95% confidence interval, 41%-55%), 94% (95% confidence interval, 93%-96%), and 16.9 (95% confidence interval, 10.8-26.6), respectively, at 36 weeks ultrasound. Abdominal circumference of <10th percentile seemed to have comparable sensitivity to estimated fetal weight of <10th percentile in predicting small-for-gestational-age neonates.
Conclusion: An ultrasound assessment of the fetal biometry at 36 weeks of gestation seemed to have better predictive accuracy for small-for-gestational-age neonates than an ultrasound assessment at 32 weeks of gestation. However, an opposite trend was noted when the outcome was fetal growth restriction. Fetal abdominal circumference had a similar predictive accuracy to that of estimated fetal weight in detecting small-for-gestational-age neonates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajogmf.2023.101246 | DOI Listing |
Pediatr Res
January 2025
Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA.
Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Of note, prenatal Zika infection can cause a spectrum of neurodevelopmental disorders, including congenital Zika syndrome.
View Article and Find Full Text PDFSouth Med J
January 2025
Department of Obstetrics and Gynecology, East Tennessee State University, Johnson City.
Objectives: In this study, buprenorphine was the primary source of maternal opioid exposure at the time of initial prenatal evaluation. Current recommendations advise that level II ultrasounds be performed in patients with substance use disorders. For some patients, distance, transportation, and costs associated with obtaining ultrasounds from a specialist pose significant barriers.
View Article and Find Full Text PDFAm J Hum Genet
December 2024
Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia; Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. Electronic address:
Four genes-DAND5, PKD1L1, MMP21, and CIROP-form a genetic module that has specifically evolved in vertebrate species that harbor motile cilia in their left-right organizer (LRO). We find here that CIROZ (previously known as C1orf127) is also specifically expressed in the LRO of mice, frogs, and fish, where it encodes a protein with a signal peptide followed by 3 zona pellucida N domains, consistent with extracellular localization. We report 16 individuals from 10 families with bi-allelic CIROZ inactivation variants, which cause heterotaxy with congenital heart defects.
View Article and Find Full Text PDFPediatr Surg Int
January 2025
Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
Purpose: To compare postoperative outcomes of bedside surgery (BS) with those of surgery performed in the operating room (ORS) in preterm and full-term neonates.
Methods: Data from neonates undergoing major surgical interventions were retrospectively evaluated. Primary outcome was the incidence of postoperative hypothermia.
Alzheimers Dement
December 2024
University of Missouri, Columbia, MO, USA.
Background: Preclinical animal models are essential for the development of effective treatments. For instance, the 5xFAD mouse model successfully represents the pathophysiology of Alzheimer's disease (AD). Expression of humanized APP (K670N/M671L - Swedish, I716V - Florida, V717I - London) and PSEN1 (M146L and L286V), found in early onset AD patients, induces the production of amyloid-β 42 (Aβ42) and amyloid deposition, gliosis, and progressive neuronal loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!