A novel antibacterial strategy for targeting the bacterial methionine biosynthesis pathway.

Int J Antimicrob Agents

College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China. Electronic address:

Published: February 2024

Bacterial pathogens reprogramme their metabolic networks to support growth and establish infection at specific sites. Bacterial central metabolism has been considered attractive for developing antimicrobial drugs; however, most metabolic enzymes are conserved between humans and bacteria. This study found that blockade of methionine biosynthesis in Citrobacter rodentium and Salmonella enteritidis inhibited bacterial growth and activity of the type III secretion system, resulting in severe defects in colonization and pathogenicity. In addition, α-methyl-methionine was found to inhibit the activity of methionine biosynthetic enzyme MetA, and consequently reduce the virulence and pathogenicity of enteric pathogens. These findings highlight the crucial role of methionine in bacterial virulence, and describe a potential new drug target.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijantimicag.2023.107057DOI Listing

Publication Analysis

Top Keywords

methionine biosynthesis
8
bacterial
5
novel antibacterial
4
antibacterial strategy
4
strategy targeting
4
targeting bacterial
4
methionine
4
bacterial methionine
4
biosynthesis pathway
4
pathway bacterial
4

Similar Publications

Dietary Methionine Restriction Alleviates Cognitive Impairment in Alzheimer's Disease Mice via Sex-Dependent Modulation on Gut Microbiota and Tryptophan Metabolism: A Multiomics Analysis.

J Agric Food Chem

January 2025

Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.

Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.

View Article and Find Full Text PDF
Article Synopsis
  • This review evaluates S-adenosylmethionine (SAMe) as a potential alternative treatment for people with depression who don't respond well to standard antidepressants.
  • It explores how SAMe may help alleviate depression by influencing neurotransmitter levels, decreasing inflammation in the brain, promoting brain adaptability, and regulating how genes express.
  • The review also discusses SAMe's possible benefits for other mental health issues and neurological conditions.
View Article and Find Full Text PDF

Correlation between quality change and hydrogen sulfide in aquatic product: Detection of hydrogen sulfide and its potential applications using bigeye tuna (Thunnus obesus) model during cold storage.

Food Chem

December 2024

College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; The International Peace Maternity and Child Health Hospital, School of Medicine. Shanghai Jiao Tong University, Shanghai 200030, China. Electronic address:

Hydrogen sulfide (HS) is an metabolic product of tuna during the spoilage, and relationship between HS and tuna quality has not been specifically studied. This study detected changes in HS content, HS precursor substances, and related enzymes based on the formation pathway of HS. HS content increased of tuna resulted in significant increases in contents of cystathionine β-synthase, cystathionine γ-lyase, 3-mercapto pyruvate sulfotransferase, cysteine aminotransferase and methionine, while content of cysteine decreased which provided HS formation.

View Article and Find Full Text PDF

E. coli Nissle 1917 improves gut microbiota composition and serum metabolites to counteract atherosclerosis via the homocitrulline/Caspase 1/NLRP3/GSDMD axis.

Int J Med Microbiol

December 2024

Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Background: The probiotic E. coli Nissle 1917 (EcN) alleviates the progression of various diseases, including colitis and tumors. However, EcN has not been studied in atherosclerosis.

View Article and Find Full Text PDF

Background/aim: Methionine addiction, known as the Hoffman effect, makes cancer cells more sensitive to methionine restriction than normal cells. However, the long-term effects of methionine restriction on cancer and normal cells have not been thoroughly studied.

Materials And Methods: HCT-116 human colorectal-cancer cells and Hs27 normal skin fibroblasts were treated with 0-8 U/ml of recombinant methioninase (rMETase) for 12 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!