AI Article Synopsis

  • Vaccinating farmed fish against diseases is crucial, requiring knowledge about their immune system development, particularly in the ballan wrasse (Labrus bergylta), where kidney and spleen development stages were characterized.
  • B-cell development occurs mainly in the head kidney and surprisingly also in the pancreatic tissue, suggesting that the pancreas plays a role in early immune responses by producing IgM-secreting cells.
  • While B-cells and T-cells develop simultaneously, B-cells migrate to mucosal tissues earlier, indicating their role in providing early immunity, and maternal transfer of IgM to offspring contributes to enhancing their immune competence early on.

Article Abstract

Vaccination of farmed fish is the most effective prophylactic measure against contagious diseases but requires specific knowledge on when the adaptive immune system is fully developed. The present work describes kidney and spleen morphogenesis as well as B-cell development in the ballan wrasse (Labrus bergylta). The kidney was present at hatching (0 days pot hatching, dph) but was not lymphoid before larvae was 50-60 dph (stage 5), containing abundant Igμ cells. The spleen anlage was first observed in larvae at 20-30 dph and was later populated with B-cells. Unexpectedly, we found strong RAG1 signal together with abundant Igμ and IgM  cells in the exocrine pancreas of larvae from when the kidney was lymphoid and onwards, suggesting that B-cell lymphopoiesis occurs not only in the head kidney (HK) but also in pancreatic tissue. In this agastric fish, the pancreas is diffused along the intestine and the early presence of IgM B-cells in pancreatic tissue might have a role in maintain immune homeostasis in the peritoneal cavity, making a substantial contribution to early protection. IgM-secreting cells in HK indicate the presence of systemic IgM at stage 5, before the first IgM cells were identified in mucosal sites. This work together with our previous study on T-cell development in this species indicates that although T- and B-cells start to develop around the same time, B-cells migrate to mucosal tissues ahead of T-cells. This early migration likely involves the production of natural antibodies, contributing significantly to early protection. Moreover, a diet composed of barnacle nauplii did not result in an earlier onset of B-cell lymphopoiesis, as seen in the previous study analysing T-cell development. Nevertheless, components for adaptive immunity indicating putative immunocompetence is likely achieved in early juveniles (>100 dph). Additionally, maternal transfer of IgM to the offspring is also described. These findings provide important insights into the development of the immune system in ballan wrasse and lay the foundation for optimizing prophylactic strategies in the future. Furthermore, this work adds valuable information to broaden the knowledge on the immune system in lower vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2023.109273DOI Listing

Publication Analysis

Top Keywords

ballan wrasse
12
b-cell lymphopoiesis
12
immune system
12
igm b-cells
8
wrasse labrus
8
labrus bergylta
8
abundant igμ
8
pancreatic tissue
8
early protection
8
previous study
8

Similar Publications

Convergent evolution of type I antifreeze proteins from four different progenitors in response to global cooling.

BMC Mol Cell Biol

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, K7L 3N6, Canada.

Alanine-rich, alpha-helical type I antifreeze proteins (AFPs) in fishes are thought to have arisen independently in the last 30 Ma on at least four occasions. This hypothesis has recently been proven for flounder and sculpin AFPs, which both originated by gene duplication and divergence followed by substantial gene copy number expansion. Here, we examined the origins of the cunner (wrasse) and snailfish (liparid) AFPs.

View Article and Find Full Text PDF

Ballan wrasse Labrus bergylta is the largest species of wrasse inhabiting European waters and one of the longest-living species within the family Labridae. A large specimen was caught off the coast of Skjerjehamn, western Norway (total length = 410 mm; weight = 1274 g). The age of the specimen was determined to be 34 years old based on the analysis of its opercula bones.

View Article and Find Full Text PDF

Possible transport routes of IgM to the gut of teleost fish.

Fish Shellfish Immunol

June 2024

Fish Health group, Department of Biological sciences, University of Bergen, Norway.

Fish rely on mucosal surfaces as their first defence barrier against pathogens. Maintaining mucosal homeostasis is therefore crucial for their overall well-being, and it is likely that secreted immunoglobulins (sIg) play a pivotal role in sustaining this balance. In mammals, the poly-Ig receptor (pIgR) is an essential component responsible for transporting polymeric Igs across mucosal epithelia.

View Article and Find Full Text PDF

Sea lice (Lepeophtheirus salmonis [Krøyer, 1838]) are a key issue for salmon aquaculture, contributing to increased mortality for both wild and farmed salmon if no action is taken. Using cleaner fish can be an effective, drug-free treatment method, and ballan wrasse (Labrus bergylta) is a hardy wrasse species that displays cleaning behavior. With concerns about the overharvest of wild ballan wrasse, many companies farm this species, but the optimal ranges of a wide variety of rearing parameters are still unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!