Light is crucial in microalgae growth. However, dividing the microalgae growth region into light and dark regions has limitations. In this study, the light response of Synechocystis sp. PCC 6803 was investigated to define four light regions (FLRs): light compensation region, light limitation region, light saturation region, and photoinhibition region. The proportions of cells' residence time in the FLRs and the number of times cells (NTC) passed through the FLRs in photobioreactors were calculated by using MATLAB. Based on the FLRs and NTC passed through the FLRs, a growth model was established by using artificial neural network (ANN).The ANN model had a validation R value of 0.97, which was 76.36% higher than the model based on light-dark regions. The high accuracy of the ANN model was further verified through dynamic adjustment of light intensity experiments.This study confirmed the importance of the FLRs for studying microalgae growth dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.130166 | DOI Listing |
Recent Pat Biotechnol
December 2024
Department of Zoology, University of Education, Bank Road Campus, Lahore, Pakistan.
Introduction: The present study examined Polyhydroxy butyrate production (PHB) potential of different photosynthetic microbes such as Chlorella vulgaris, Scenedesmus obliquus and Rhodobacter capsulatus-PK under different nutrient conditions. Biodegradable bioplastics, such as Poly-β-hydroxybutyrates (PHB), derived from these microbes provide a sustainable alternative to conventional petroleum-based nondegradable plastics.
Background: As the demand for clean and sustainable alternatives rises, bio-plastic is gaining attention as a viable substitute to conventional plastics.
Microb Cell Fact
January 2025
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.
View Article and Find Full Text PDFBiometals
January 2025
Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
Zinc is an essential metal to living organisms, including corals and their symbiotic microalgae (Symbiodiniaceae). Both Zn(II) deprivation and overload are capable of leading to dysfunctional metabolism, coral bleaching, and even organism death. The present work investigated the effects of chemically defined Zn species (free Zn, ZnO nanoparticles, and the complexes Zn-histidinate and Zn-EDTA) over the growth of the dinoflagellates Symbiodinium microadriaticum, Breviolum minutum, and Effrenium voratum, and on the trypsin-like proteolytic activity of the hydrocoral Millepora alcicornis.
View Article and Find Full Text PDFBiotechnol Notes
December 2024
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
This study investigates the potential of phototrophic microalgae, specifically Chlorella protothecoides, for biological wastewater treatment, with a focus on the effects of air temperature and CO concentration on nutrient removal from tertiary municipal wastewater. Utilizing both the Monod and Arrhenius kinetic models, the research examines how temperature and nutrient availability influence microalgal growth and nutrient removal. The study finds that optimal biomass productivity occurs at 25 °C, with growth slowing at higher temperatures (30 °C, 40 °C, and 45 °C).
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!