AdipoRon reduces cisplatin-induced ototoxicity in hair cells:possible relation to the regulation of mitochondrial biogenesis.

Neurosci Lett

Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Central Lab, Shandong Provincial Hospital Affiliated to Shandong First University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China. Electronic address:

Published: January 2024

AdipoRon (AR) can exert antidiabetic and anti-inflammatory effects by maintaining mitochondrial structure and function. The present study was designed to explore whether AR protects the auditory cells from cisplatin-induced damage and, if so, to probe the possible mechanisms underlying its action on this type of cells. Cell viability and apoptosis in House Ear Institute-Organization of Corti 1 (HEI-OC1 cells) and mouse cochlea hair cells (HCs) were detected by CCK8 and immunofluorescence. The expressions of apoptosis-related proteins (cleaved caspase-3 and Bcl-2), adiponectin receptor 1 (AdipoR 1) and the key factors relevant to mitochondrial biogenesis(SIRT1 and TFAM)were determined by Western blot and immunofluorescence. Changes in apoptotic rate and expression of SIRT1 and TFAM after silencing of AdipoR 1 (AdipoR 1-siRNA) in HEI-OC1 cells were measured by flow cytometry and Western blot. The levels of reactive oxygen species (ROS) were evaluated by MitoSox red staining. We found that 30 μM cisplatin exposure induced severe cellular damage, which resulted from activation of the mitochondrial apoptotic pathway. Cisplatin decreased the expression of AdipoR 1, SIRT1, and TFAM proteins, leading to impaired mitochondrial biogenesis and increased mitochondrial ROS production. 10 μM AR pre-treatment enhanced mitochondrial biogenesis, decreased mitochondrial ROS levels, alleviated imbalances in the mitochondrial apoptotic pathway, thus reducing cisplatin-induced apoptosis. Taken together, this work reveals that AR exerts anti-apoptotic effects, possibly via regulating mitochondrial biogenesis and function. Interestingly, AR might possess the promising potential to be a novel drug for the prevention and/ or treatment of cisplatin-induced ototoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2023.137577DOI Listing

Publication Analysis

Top Keywords

mitochondrial biogenesis
16
mitochondrial
10
cisplatin-induced ototoxicity
8
hei-oc1 cells
8
western blot
8
sirt1 tfam
8
mitochondrial apoptotic
8
apoptotic pathway
8
mitochondrial ros
8
cells
5

Similar Publications

Nuclear respiratory factor-1 (NRF1) induction drives mitochondrial biogenesis and attenuates amyloid beta-induced mitochondrial dysfunction and neurotoxicity.

Neurotherapeutics

December 2024

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA; Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, 77030, USA. Electronic address:

Mitochondrial dysfunction is an important driver of neurodegeneration and synaptic abnormalities in Alzheimer's disease (AD). Amyloid beta (Aβ) in mitochondria leads to increased reactive oxygen species (ROS) production, resulting in a vicious cycle of oxidative stress in coordination with a defective electron transport chain (ETC), decreasing ATP production. AD neurons exhibit impaired mitochondrial dynamics, evidenced by fusion and fission imbalances, increased fragmentation, and deficient mitochondrial biogenesis, contributing to fewer mitochondria in brains of AD patients.

View Article and Find Full Text PDF

Effects of Caffeic Acid Phenethyl Ester on Embryonic Development Through Regulation of Mitochondria and Endoplasmic Reticulum.

Vet Sci

December 2024

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China.

Caffeic acid phenethyl ester (CAPE) is one of the main active components of the natural medicine propolis, which has antioxidant, anti-tumor, and immunomodulatory activities. This study aimed to analyze the effects and underlying mechanisms of CAPE added to the medium of in vitro cultures on the developmental competence, mitochondria, and endoplasmic reticulum of porcine embryos. The results demonstrated that 1 nM of CAPE significantly improved the quality of porcine embryos, increased the rate of blastocyst formation, and enhanced the proliferation ability.

View Article and Find Full Text PDF

Spotlight on the Mechanism of Action of Semaglutide.

Curr Issues Mol Biol

December 2024

1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece.

Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing.

View Article and Find Full Text PDF

Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcription factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown.

View Article and Find Full Text PDF

Mitochondrial homeostatic imbalance-mediated developmental toxicity to HS in embryonic zebrafish.

Environ Pollut

December 2024

Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China. Electronic address:

Hydrogen sulfide (HS) is a pervasive environmental and industrial pollutant that poses a substantial threat to human health. Even short-term exposure to HS can result in severe respiratory and neurological damage. However, the underlying mechanisms of its biotoxicity remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!