AI Article Synopsis

  • This study aimed to compare different methods of evaluating heart function using MR 4D flow imaging against echocardiography as a reference.
  • Researchers tested 60 subjects and measured key heart velocities (E, A) using three evaluation strategies, noting their correlations with echocardiography results.
  • The max-velocity method showed the most accurate outcomes, allowing for reliable assessment of heart function without significant bias, thus supporting the use of established echocardiographic thresholds for analysis.

Article Abstract

Purpose: To compare agreement of different evaluation methods of magnetic resonance (MR) 4D flow-derived diastolic transmitral and myocardial peak velocities as well as their ratios, using echocardiography as reference.

Methods: In this prospective study, 60 subjects without symptoms of cardiovascular disease underwent echocardiography and non-contrast 3 T MR 4D flow imaging of the heart. Early- (E) and late-diastolic (A) transmitral peak filling velocities were evaluated from 4D flow data using three different strategies: 1) at the mitral valve tips in short-axis orientation (SA-method), 2) between the mitral valve tips in 4-chamber orientation (4-chamber-method), and 3) as maximal velocities in the transmitral inflow volume (max-velocity-method). Septal, lateral and average early-diastolic myocardial peak velocities (e') were derived from the myocardial tissue in the vicinity of the mitral valve. 4D flow parameters were compared with echocardiography by correlation and Bland-Altman analysis.

Results: All 4D flow-derived E, A and E/A values correlated with echocardiography (r = 0.65-0.73, 0.75-0.83 and 0.74-0.86, respectively). While the SA- and 4-chamber-methods substantially underestimated E and A compared to echocardiography (p < 0.001), the max-velocity-method provided E (p = 0.13) and E/A (p = 0.07) without significant bias. Septal, lateral and average e' from 4D flow as well as the max-velocity-method-derived E/e' correlated with echocardiographic measurements (r = 0.64-0.81) and showed no significant bias (p = 0.26-0.54).

Conclusion: MR 4D flow imaging allows precise and accurate evaluation of transmitral and myocardial peak velocities for characterization of LV diastolic function without significant bias to echocardiography, when transmitral velocities are assessed from the transmitral inflow volume. This enables the use of validated echocardiography threshold values.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2023.111247DOI Listing

Publication Analysis

Top Keywords

myocardial peak
12
peak velocities
12
mitral valve
12
flow-derived diastolic
8
diastolic transmitral
8
transmitral myocardial
8
valve tips
8
compared echocardiography
8
echocardiography
6
velocities
5

Similar Publications

Peak Procedural ACT Is Associated With All-Cause Mortality After Femoral Access PCI.

J Soc Cardiovasc Angiogr Interv

December 2024

Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, San Diego, California.

Background: A minimum threshold activated clotting time (ACT) to guide heparin dosing during percutaneous coronary intervention (PCI) is associated with lower ischemic complications. However, data are variable regarding the risk of high ACT levels. The aim of this study was to assess the impact of peak procedural ACT on complications and mortality for transfemoral and transradial access PCI.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the hemodynamic changes in the vena cava and predict the likelihood of Cardiac Remodeling (CR) and Myocardial Fibrosis (MF) in athletes utilizing four-dimensional (4D) parameters.

Materials And Methods: A total of 108 athletes and 29 healthy sedentary controls were prospectively recruited and underwent Cardiac Magnetic Resonance (CMR) scanning. The 4D flow parameters, including both general and advanced parameters of four planes for the Superior Vena Cava (SVC) and Inferior Vena Cava (IVC) (sheets 1-4), were measured and compared between the different groups.

View Article and Find Full Text PDF

Background: Diabetic myocardial disorder (DbMD, evidenced by abnormal echocardiography or cardiac biomarkers) is a form of stage B heart failure (SBHF) at high risk for progression to overt HF. SBHF is defined by abnormal LV morphology and function and/or abnormal cardiac biomarker concentrations.

Objective: To compare the evolution of four DbMD groups based on biomarkers alone, systolic and diastolic dysfunction alone, or their combination.

View Article and Find Full Text PDF

Background: The role of cyclic guanosine 3',5'-monophosphate (cGMP) after acute myocardial infarction (AMI) is not well understood despite its significance as a second messenger of natriuretic peptides (NPs) in cardiovascular disease. We investigated the association between the NP-cGMP cascade and left ventricular reverse remodelling (LVRR) in anterior AMI.

Methods: 67 patients with their first anterior AMI (median age, 64 years; male, 76%) underwent prospective evaluation of plasma concentrations of the molecular forms of A-type and B-type natriuretic peptide (BNP) and cGMP from immediately after primary percutaneous coronary intervention (PPCI) to 10 months post-AMI.

View Article and Find Full Text PDF

Cardiac dysfunction and adverse consequences induced by cardiac fibrosis have been well documented. However, the cardiac fibrosis pathway in chronic heart failure (CHF) remains unclear, and it is therefore necessary to conduct further research for the sake of developing more effective therapeutic strategies for CHF. Some recent studies suggest that Pericarpium Trichosanthis (PT) may help improve the progression of fibrotic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!