Suppressing the electron-hole recombination rate of catalyst legitimately is one of the effective strategies to improve photocatalytic hydrogen evolution. Herein, carbon-coated metal oxide, ZnFeO@C (ZFO@C), nanoparticles were synthesized and employed to couple with quadrupedal CdZnS (CZS) via an ordinary ultrasonic self-assembly method combined with calcination to form a novel ZFO@C/CZS catalyst with step-scheme (S-scheme) heterojunction. The photocatalytic hydrogen evolution reaction (HER) was conducted to verify the enhanced photoactivity of ZFO@C/CZS. The optimal ZFO@C/CZS exhibits an extraordinary photocatalytic HER rate of 111.3 ± 0.9 mmol g h under visible-light irradiation, corresponding to an apparent quantum efficiency as high as (76.2 ± 0.9)% at 450 nm. Additionally, the as-synthesized ZFO@C/CZS composite exhibits high stability and recyclability. The excellent photocatalytic hydrogen evolution performance should arise from the formed S-scheme heterojunction and the unique ZFO@C core-shell structure, which inhibit electron hole recombination as well as provide more reactive sites. The pathway of S-scheme charge transfer was validated through density functional theory calculations and electrochemical measurements. This work provides a rational strategy for the synthesis of unique magnetic S-scheme heterojunction photocatalysts for water splitting under visible light irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.11.159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!