A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On-field instrumented mouthguard coupling. | LitMetric

On-field instrumented mouthguard coupling.

J Biomech

School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada. Electronic address:

Published: January 2024

Instrumented mouthguard (iMG) sensors have been developed to measure sports head acceleration events (HAE) in brain injury research. Laboratory validation studies show that effective coupling of iMGs with the human skull is crucial for accurate head kinematics measurements. However, iMG-skull coupling has not been investigated in on-field sports settings. The objective of this study was to assess on-field iMG coupling using infrared proximity sensing and to investigate coupling effects on kinematics signal characteristics. Forty-two university-level men's ice hockey (n = 21) and women's rugby (n = 21) athletes participated in the study, wearing iMGs during 6-7 month in-season periods. Proximity data classified video-verified HAE recordings into four main iMG coupling categories: coupled (on-teeth), decoupling (on-teeth to off-teeth), recoupling (off-teeth to on-teeth) and decoupled (off-teeth). Poorly-coupled HAEs showed significantly higher peak angular acceleration amplitudes and greater signal power in medium-high frequency bands compared with well-coupled HAEs, indicating potential iMG movements independent of the skull. Further, even video-verified true positives included poorly-coupled HAEs, and iMG coupling patterns varied between the men's hockey and women's rugby teams. Our findings show the potential of using proximity sensing in iMGs to identify poorly-coupled HAEs. Utilizing this data screening process in conjunction with video review may mitigate a key source of sensor noise and enhance the overall quality of on-field sports HAE datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2023.111889DOI Listing

Publication Analysis

Top Keywords

img coupling
12
poorly-coupled haes
12
instrumented mouthguard
8
on-field sports
8
proximity sensing
8
women's rugby
8
coupling
7
img
5
on-field
4
on-field instrumented
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!