A poly(amidoamine)-based polymeric nanoparticle platform for efficient in vivo delivery of mRNA.

Biomater Adv

20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands. Electronic address:

Published: January 2024

The successful use of mRNA vaccines enabled and accelerated the development of several new vaccine candidates and therapeutics based on the delivery of mRNA. In this study, we developed bioreducible poly(amidoamine)-based polymeric nanoparticles (PAA PNPs) for the delivery of mRNA with improved transfection efficiency. The polymers were functionalized with chloroquinoline (Q) moieties for improved endosomal escape and further stabilization of the mRNA-polymer construct. Moreover, these PAAQ polymers were covalently assembled around a core of multi-armed ethylenediamine (Mw 800, 2 % w/w) to form a pre-organized polymeric scaffolded PAAQ (ps-PAAQ) as a precursor for the formation of the mRNA-loaded nanoparticles. Transfection of mammalian cell lines with EGFP mRNA loaded into these PNPs showed a favorable effect of the Q incorporation on GFP protein expression. Additionally, these ps-PAAQ NPs were co-formulated with PEG-polymer coatings to shield the positive surface charge for increased stability and better in vivo applicability. The ps-PAAQ NPs coated with PEG-polymer displayed smaller particle size, electroneutral surface charge, and higher thermal stability. Importantly, these nanoparticles with both Q and PEG-polymer coating induced significantly higher luciferase activity in mice muscle than uncoated ps-PAAQ NPs, following intramuscular injection of PNPs loaded with luciferase mRNA. The developed technology is broadly applicable and holds promise for the development of new nucleotide-based vaccines and therapeutics in a range of infectious and chronic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213713DOI Listing

Publication Analysis

Top Keywords

delivery mrna
12
ps-paaq nps
12
polyamidoamine-based polymeric
8
surface charge
8
mrna
6
polymeric nanoparticle
4
nanoparticle platform
4
platform efficient
4
efficient vivo
4
vivo delivery
4

Similar Publications

Barcoded Hybrids of Extracellular Vesicles and Lipid Nanoparticles for Multiplexed Analysis of Tissue Distribution.

Adv Sci (Weinh)

January 2025

Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 43150, Sweden.

Targeted delivery of therapeutic agents is a persistent challenge in modern medicine. Recent efforts in this area have highlighted the utility of extracellular vesicles (EVs) as drug carriers, given that they naturally occur in bloodstream and tissues, and can be loaded with a wide range of therapeutic molecules. However, biodistribution and tissue tropism of EVs remain difficult to study systematically.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage.

View Article and Find Full Text PDF

Remote research studies are an invaluable tool for reaching populations with limited access to large medical centers or universities. To expand the remote study toolkit, we previously developed homeRNA, which allows for at-home self-collection and stabilization of blood and demonstrated the feasibility of using homeRNA in high temperature climates. Here, we expand upon this work through a systematic study exploring the effects of high temperature on RNA integrity (represented as RNA Integrity Number, RIN) through in-lab and field experiments.

View Article and Find Full Text PDF

PCBP2-dependent secretion of miRNAs via extracellular vesicles contributes to the EGFR-driven angiogenesis.

Theranostics

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.

The EGFR-driven angiogenesis is crucial in solid tumors, particularly through the delivery of biomolecules via extracellular vesicles (EVs), but the mechanism by which EGFR regulates EV cargo is still unclear. First, cell co-culture and murine tumor models were employed to examine the impact of EGFR overexpression on the pro-angiogenic properties of small EVs (sEVs) derived from oral squamous cell carcinoma (OSCC). Small RNA sequencing was then used to compare the miRNA profiles of OSCC-sEVs with and without EGFR overexpression, followed by functional enrichment and motif analyses of the differentially expressed miRNAs.

View Article and Find Full Text PDF

Graphene Quantum Dots as Antifibrotic Therapy for Kidney Disease.

ACS Appl Bio Mater

January 2025

Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea.

Graphene quantum dots (GQDs) have received much attention for their biomedical applications, such as bioimaging and drug delivery. Additionally, they have antioxidant and anti-inflammatory properties. We used GQDs to treat renal fibrosis and confirmed their ability to protect renal cells from excessive oxidative stress in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!