The mixing of wastewater and natural water releases abundant osmotic energy. Harvesting this energy could significantly reduce the energy and economic cost of water treatment, leading to sustainable wastewater treatment technology. Yet, such energy harvesting is highly challenging because it requires a material that is highly permeable to nontoxic ions while rejecting toxic ions in wastewater to reach high power density and prevent environmental pollution. In this work, we demonstrate that a light-augmented biomimetic multi-ion interaction in an MXene membrane can simultaneously realize high permeability of Na ions for enhanced osmotic power generation and high selectivity to heavy metal ions up to a ratio of 2050 for wastewater treatment. The Na permeability is enhanced by the photothermal effect of the MXene membrane. The transport of heavy metal ions, however, is suppressed because, under angstrom-confinement, heavy metal ions are strongly electrostatically repelled by the increased number of permeating Na ions. As a result, the membrane can stably generate osmotic power from simulated industrial wastewater, and the power density can be enhanced by 4 times under light illumination of approximate 1 sun intensity. This work highlights the importance of multi-ion interaction for the transport properties of ionic materials, which remains rarely investigated and poorly understood in previous studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c08487 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!