A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active Learning Guided Computational Discovery of Plant-Based Redoxmers for Organic Nonaqueous Redox Flow Batteries. | LitMetric

Organic nonaqueous redox flow batteries (O-NRFBs) are promising energy storage devices due to their scalability and reliance on sourceable materials. However, finding suitable redox-active organic molecules (redoxmers) for these batteries remains a challenge. Using plant-based compounds as precursors for these redoxmers can decrease their costs and environmental toxicity. In this computational study, flavonoid molecules have been examined as potential redoxmers for O-NRFBs. Flavone and isoflavone derivatives were selected as catholyte (positive charge carrier) and anolyte (negative charge carrier) molecules, respectively. To drive their redox potentials to the opposite extremes, derivatization was performed using a novel algorithm to generate a library of > 40000 candidate molecules that penalizes overly complex structures. A multiobjective Bayesian optimization based active learning algorithm was then used to identify best redoxmer candidates in these search spaces. Our study provides methodologies for molecular design and optimization of natural scaffolds and highlights the need of incorporating expert chemistry awareness of the natural products and the basic rules of synthetic chemistry in machine learning.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c11741DOI Listing

Publication Analysis

Top Keywords

active learning
8
organic nonaqueous
8
nonaqueous redox
8
redox flow
8
flow batteries
8
charge carrier
8
learning guided
4
guided computational
4
computational discovery
4
discovery plant-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!