PNO1 promotes the progression of osteosarcoma via TGF-β and YAP/TAZ pathway.

Sci Rep

Department of Orthopedics and Traumatology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China.

Published: December 2023

This study aimed to explore the potential role and mechanisms of the partner of NOB1 homolog (PNO1) in osteosarcoma. The expression of PNO1 in tumor and adjacent tissue samples was examined using western blotting. Lentiviral transfection was used to establish sh-Ctrl and sh-PNO1 osteosarcoma cell lines. MTT assay, Celigo cell cytometer count, and cell colony formation assay were used to investigate the proliferation of osteosarcoma cells in vitro, whereas xenotransplantation assay was performed for in vivo experiments. Wound-healing and Transwell assays were chosen to verify the migration and invasion of osteosarcoma cells. Flow cytometry assay and caspase-3/7 activity analysis were adopted for the analysis of cell apoptosis and cell cycle. Finally, transcriptome sequencing and bioinformatics analysis were adopted to explore the acting mechanisms. The expression of PNO1 was higher in osteosarcoma tissues than that in adjacent tissues. Down-regulation of PNO1 inhibited the proliferation, migration, and invasion, and induced cell apoptosis and cell cycle arrest of osteosarcoma cells. Furthermore, according to transcriptome sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we found that PNO1 might affect the progression of osteosarcoma via TGF-β and YAP/TAZ signaling pathways. PNO1 could be a potential target for osteosarcoma treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710495PMC
http://dx.doi.org/10.1038/s41598-023-49295-8DOI Listing

Publication Analysis

Top Keywords

osteosarcoma cells
12
osteosarcoma
9
progression osteosarcoma
8
osteosarcoma tgf-β
8
tgf-β yap/taz
8
expression pno1
8
migration invasion
8
analysis adopted
8
cell apoptosis
8
apoptosis cell
8

Similar Publications

Single cell combined with laser ablation ICP-MS to study cisplatinum (IV) loaded nanoparticles penetration pathways in osteosarcoma spheroids.

Anal Chim Acta

January 2025

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:

Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.

View Article and Find Full Text PDF

Design and evaluation of a multi-responsive dual-modality bone-targeted drug delivery vehicle for the treatment of osteosarcoma.

Int J Pharm

January 2025

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004 China; School of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China. Electronic address:

The combination of chemotherapy and photothermal therapy not only improves the therapeutic effect but also limits the side effects of drugs. Herein, a multi-responsive dual-modality bone-targeted drug delivery vehicle for the treatment of osteosarcoma was designed by utilizing alendronate sodium as a bone-targeting ligand for the targeted delivery of doxorubicin (DOX) loaded polydopamine nanoparticles (PDA NPs) coated with γ-polyglutamic acid (APC@PDA/DOX NPs). The average size of spherical NPs was 140.

View Article and Find Full Text PDF

Unraveling the impact of noncoding RNAs in osteosarcoma drug resistance: a review of mechanisms and therapeutic implications.

Int J Surg

December 2024

Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology,Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China.

Osteosarcoma (OS) is a prevalent primary malignant bone tumor, typically managed through a combination of neoadjuvant chemotherapy and surgical interventions. Recent advancements in early detection and the use of novel chemotherapeutic agents have significantly improved the 5-year survival rate of OS patients. However, some patients fail to achieve the desired treatment outcomes despite undergoing intensive chemotherapy and surgicals procedures, with chemotherapy resistance emerging as a critical factor contributing to therapeutic failure in OS.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.

View Article and Find Full Text PDF

Predicting cell morphological responses to perturbations using generative modeling.

Nat Commun

January 2025

Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.

Advancements in high-throughput screenings enable the exploration of rich phenotypic readouts through high-content microscopy, expediting the development of phenotype-based drug discovery. However, analyzing large and complex high-content imaging screenings remains challenging due to incomplete sampling of perturbations and the presence of technical variations between experiments. To tackle these shortcomings, we present IMage Perturbation Autoencoder (IMPA), a generative style-transfer model predicting morphological changes of perturbations across genetic and chemical interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!