Foam has been shown to have great potential to significantly improve sweep efficiency during gas injection in oil recovery, remediation of contaminated sites, gas storage, and acidification processes. The gas mobility reduction largely depends on the generation and stability of lamellae in the pore space that traps the gas phase. Most available analyses focus on foam formation during the co-injection of gas and liquid phases at different fractional flow (foam quality) or flow of foam formed before being injected in the porous media. During surfactant-alternating-gas (SAG) injection, foam is formed as the aqueous phase is displaced by the gas slug that follows. The dynamics of lamellae formation and their stability are different from that of a co-injection process, since the amount of surfactant available to stabilize the gas-liquid interfaces is fixed as fresh surfactant solution is not injected together with the gas phase. This work studies foam formation during the drainage of a surfactant solution by gas injection at a fixed flow rate. A transparent microfluidic model of a porous medium is used in order to enable the correlation of pore-scale phenomena and macroscopic flow behavior. The results show that the maximum number of lamellae increases with surfactant concentration, even much above the critical micelle concentration (CMC). The availability of surfactant molecules needed to stabilize newly formed gas-liquid interfaces rises with concentration. The higher number of lamellae formed at higher surfactant concentration leads to stronger mobility reduction of the gas phase and longer time needed for the gas to percolate through the porous medium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710497 | PMC |
http://dx.doi.org/10.1038/s41598-023-48442-5 | DOI Listing |
Cardiovasc Diabetol
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China.
Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.
View Article and Find Full Text PDFBiol Direct
January 2025
National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
Cardiometabolic diseases (CMD) are leading causes of death and disability worldwide, with complex pathophysiological mechanisms in which inflammation plays a crucial role. This review aims to elucidate the molecular and cellular mechanisms within the inflammatory microenvironment of atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis, oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate immune cells contributing to foam cell formation and arterial wall thickening.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.
Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.
View Article and Find Full Text PDFDalton Trans
January 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The electrochemical nitrate reduction reaction (NORR) is considered as a promising strategy for addressing environmental pollution and sustainable energy development. In this study, prism-like CuO loaded on copper foam (CuO/CF) was synthesized in a simple solvothermal reaction and an electrochemical reconstruction process. The electrochemical reconstruction process facilitates the formation of a CuO lattice structure on copper foam derived from FU-CF generated by the reaction of copper foam and fumaric acid (HFU) in DMF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!