The limited mechanical performance and responsiveness of protein-based smart packaging materials have hindered their development. To address these issues, this study prepared a pH-responsive smart film by introducing dialdehyde carboxylated cellulose nanofibers (DCCNFs) as the cross-linking agent capable of covalently reacting with proteins, and bilberry extract (BE) as a pH-responsive indicator into pea protein isolate (PPI) matrix. The results demonstrated that adding DCCNF and BE enhanced the PPI film's thermal stability, density, and UV barrier properties. Tensile tests revealed significant improvements in both tensile strength and elongation at the break for the resulting film. Furthermore, films containing DCCNF and BE exhibited lower moisture content, swelling ratio, water vapor permeability, and relative oxygen transmission compared to PPI films. Notably, the anthocyanins in BE endowed the film with visual color changes corresponding to different pH values. This feature enabled the film to monitor pork freshness; a transition from acidic to alkaline in pork samples was accompanied by a color change from brown to brownish green in the film as storage time increased. Overall, these findings highlight that this developed film possesses excellent physicochemical properties and sensitive pH response capabilities, making it a promising candidate for future smart packaging applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128671DOI Listing

Publication Analysis

Top Keywords

pea protein
8
protein isolate
8
dialdehyde carboxylated
8
carboxylated cellulose
8
cellulose nanofibers
8
pork freshness
8
smart packaging
8
film
7
ph-responsive color-indicating
4
color-indicating film
4

Similar Publications

The aim of this study was to use blue whiting fish protein hydrolysate (BWFPH) as a novel dietary amino acid supplement in whey protein isolate (WPI) and pea protein isolate (PPI)-based protein bars. The findings indicate that incorporating BWFPH significantly influenced the nutritional profile of the protein bars, leading to a ~93% reduction in hardness compared to bars without the hydrolysate. Additionally, BWFPH effectively delayed the hardening process during storage.

View Article and Find Full Text PDF

Unveiling the potential of bean proteins: Extraction methods, functional and structural properties, modification techniques, physiological benefits, and diverse food applications.

Int J Biol Macromol

January 2025

Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom.

Bean proteins, known for their sustainability, versatility, and high nutritional value, represent a valuable yet underutilized resource, receiving less industrial attention compared to soy and pea proteins. This review examines the structural and molecular characteristics, functional properties, amino acid composition, nutritional value, antinutritional factors, and digestibility of bean proteins. Their applications in various food systems, including baked goods, juice and milk substitutes, meat alternatives, edible coatings, and 3D printing inks, are discussed.

View Article and Find Full Text PDF

The proximity extension assay (PEA) enables large-scale proteomic investigations across numerous proteins and samples. However, discrepancies between measurements, known as batch-effects, potentially skew downstream statistical analyses and increase the risks of false discoveries. While implementing bridging controls (BCs) on each plate has been proposed to mitigate these effects, a clear method for utilizing this strategy remains elusive.

View Article and Find Full Text PDF

A study was conducted to determine the effects of protease supplementation of field pea (in comparison with soybean meal; SBM) for broilers on apparent metabolizable energy (AMEn) and standardized ileal digestibility (SID) of amino acids (AA). One hundred and forty broiler chicks were divided into 35 groups of 4 birds/group and fed 5 diets in a completely randomized design (7 groups/diet) from 14 to 21 d of age. The diets were cornstarch-based containing SBM or field pea as the sole protein source without or with protease (ProSparity 250; CBS Bio Platforms, Calgary, AB, Canada) in 2 × 2 factorial arrangement, and N-free diet.

View Article and Find Full Text PDF

Hydrophobization could improve the moisture resistance of biopolymer-based materials, depending on the methods and materials used, providing benefits for packaging applications. The aim of this study was to compare the effect of increasing concentrations (0-2.0%) of candelilla wax (CW) and oleic acid (OA) on the structural and physicochemical properties, including water affinity, of glycerol-plasticized pea protein isolate (PPI) films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!