A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular Characterization of Mesoporous Silica (Un)loading by Gemcitabine and Ibuprofen - An Interplay of Salt-Bridges and Hydrogen Bonds. | LitMetric

Molecular Characterization of Mesoporous Silica (Un)loading by Gemcitabine and Ibuprofen - An Interplay of Salt-Bridges and Hydrogen Bonds.

J Pharm Sci

Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany. Electronic address:

Published: March 2024

The molecular mechanisms of mesoporous silica nanomaterial (MSN) loading by gemcitabine and ibuprofen molecules, respectively, are elucidated as functions of pore geometry. Based on a small series of MSN archetypes, we use molecular dynamics simulations to systematically explore molecule-by-molecule loading of the carrier material. Apart from predicting the maximum active pharmaceutical ingredient (API) loading capacity, more detailed statistical analysis of the incorporation energy reveals dedicated profiles stemming from the interplay of guest-MSN salt-bridges/hydrogen bonding in concave and convex domains of the silica surfaces - which outcompete interactions among the drug molecules. Only after full coverage of the silica surface, we find secondary layer growth stabilized by guest-guest interactions exclusively. Based on molecular models, we thus outline a two-step type profile for drug release from MSN networks. Subject to the MSN structure, we find 50-75 % of the API within amorphous domains in the inner regions of the pores - from which drug release is provided at constant dissociation energy. In turn, the remaining 50-25 % of drug molecules are drastically hindered from dissociation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2023.12.002DOI Listing

Publication Analysis

Top Keywords

mesoporous silica
8
gemcitabine ibuprofen
8
drug molecules
8
drug release
8
molecular
4
molecular characterization
4
characterization mesoporous
4
silica
4
silica unloading
4
unloading gemcitabine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!