Arctii Fructus is the dried ripe fruit of Arctium lappa L. (family Asteraceae) and is in the Chinese pharmacopoeia. Previous research showed that the total lignans from Arctii Fructus (TLAF) have pharmacological activities related to diabetes. This study evaluated the acute and chronic (26 weeks) toxicities associated with oral daily administration of TLAF in Sprague-Dawley (SD) rats. An acute-toxicity test showed that TLAF caused 10% mortality at 3,000 mg/kg × 2 (6-h interval), with toxic symptoms, such as dyspnea and tonic convulsions, indicating potential neurotoxicity. A chronic-toxicity study showed no mortality after administration. The no observed adverse-effect level was 1,800 mg/kg (approximately 54 times higher than the human clinical dose) for 26 weeks of TLAF oral administration in SD rats, with toxicity signs of excessive oral and nasal secretions and moist circumferential hair that recovered after TLAF discontinuation. In the toxicokinetic study, the two main components of TLAF, arctigenin plasma level was positively correlated with dose and tended to accumulate after multiple doses. At 1,800 mg/kg, arctiin plasma level increased and tended to accumulate after multiple doses. These results indicated that TLFA has relatively low toxicity and the potential for clinical treatment of diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yrtph.2023.105542 | DOI Listing |
Plant Dis
November 2024
USDA Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States;
Brain Behav
November 2024
Department of Pediatric Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University/Xuzhou Eastern People's Hospital, Xuzhou, Jiangsu, China.
Background: Depressive disorder is a common and serious public health challenge globally. Fructus arctii is a traditional medicinal plant ingredient with diverse pharmacological effects. This study aimed to investigate the therapeutic potential of Fructus arctii in alleviating depressive-like behaviors.
View Article and Find Full Text PDFInflammation
August 2024
Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression.
View Article and Find Full Text PDFAntioxidants (Basel)
June 2024
College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China.
Aging is often accompanied by irreversible decline in body function, which causes a large number of age-related diseases and brings a huge economic burden to society and families. Many traditional Chinese medicines have been known to extend lifespan, but it has still been a challenge to isolate a single active molecule from them and verify the mechanism of anti-aging action. Drugs that inhibit senescence-associated secretory phenotypes (SASPs) are called "senomorphics".
View Article and Find Full Text PDFPlanta
May 2024
School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, Liaoning Province, People's Republic of China.
The secondary metabolic conversion of monolignans to sesquilignans/dilignans was closely related to seed germination and seedling establishment in Arctium lappa. Arctium lappa plants are used as a kind of traditional Chinese medicines for nearly 1500 years, and so far, only a few studies have put focus on the key secondary metabolic changes during seed germination and seedling establishment. In the current study, a combined approach was used to investigate the correlation among secondary metabolites, plant hormone signaling, and transcriptional profiles at the early critical stages of A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!